LCA题集
点的距离(模板题)
树中两点间的距离就是d[u] + d[v] - 2 * d[lca(u, v)]
#include<bits/stdc++.h>
#define REP(i, a, b) for(register int i = (a); i < (b); i++)
#define _for(i, a, b) for(register int i = (a); i <= (b); i++)
using namespace std;
const int MAXN = 1e5 + 10;
const int MAXM = 20;
struct Edge { int to, next; };
Edge e[MAXN << 1];
int head[MAXN], num, n;
int up[MAXN][MAXM + 10], d[MAXN];
void AddEdge(int from, int to)
{
e[num] = Edge{to, head[from]};
head[from] = num++;
}
void dfs(int u, int fa)
{
for(int i = head[u]; ~i; i = e[i].next)
{
int v = e[i].to;
if(v == fa) continue;
d[v] = d[u] + 1;
up[v][0] = u;
dfs(v, u);
}
}
void get_up()
{
_for(j, 1, MAXM)
_for(i, 1, n)
up[i][j] = up[up[i][j-1]][j-1];
}
int lca(int u, int v)
{
if(d[u] < d[v]) swap(u, v);
for(int i = MAXM; i >= 0; i--)
if(d[up[u][i]] >= d[v])
u = up[u][i];
if(u == v) return u;
for(int i = MAXM; i >= 0; i--)
if(up[u][i] != up[v][i])
u = up[u][i], v = up[v][i];
return up[u][0];
}
int main()
{
memset(head, -1, sizeof(head));
num = 0; scanf("%d", &n);
REP(i, 1, n)
{
int u, v;
scanf("%d%d", &u, &v);
AddEdge(u, v); AddEdge(v, u);
}
dfs(1, -1);
get_up();
int q; scanf("%d", &q);
while(q--)
{
int u, v;
scanf("%d%d", &u, &v);
printf("%d\n", d[u] + d[v] - 2 * d[lca(u, v)]);
}
return 0;
}
暗的连锁
这道题首先有个转化
切两刀能不能切断,取决于非树边,因为非树边会构成环
那么可以把非树边构成的环上所有的树边都覆盖一次
如果只覆盖一次,那么显然有唯一解
如果没有被覆盖,那就加上非树边的数目,因为第二刀可以切任意一条非树边
如果覆盖两次以上,那么两刀是不能解决问题的。
所以就有维护每条边被覆盖了多少次
这里用到了树上差分,f[u]表示u与u的父亲连的边的覆盖次数
对于非树边u, v,让f[u]++, f[v]++, f[lca(u, v)]--
最后在“前缀和回来”,即统计所有子树的值加起来,就是答案
最后注意计算答案的时候根的f数组不算,因为根没有父亲
#include<bits/stdc++.h>
#define REP(i, a, b) for(register int i = (a); i < (b); i++)
#define _for(i, a, b) for(register int i = (a); i <= (b); i++)
using namespace std;
const int MAXN = 1e5 + 10;
const int MAXM = 20;
struct Edge{ int to, next; };
Edge e[MAXN << 1];
int head[MAXN], num, n, m;
int up[MAXN][MAXM + 10], d[MAXN];
int f[MAXN];
void read(int& x)
{
int f = 1; x = 0; char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar(); }
while(isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); }
x *= f;
}
void AddEdge(int to, int from)
{
e[num] = Edge{to, head[from]};
head[from] = num++;
}
void dfs(int u, int fa)
{
for(int i = head[u]; ~i; i = e[i].next)
{
int v = e[i].to;
if(v == fa) continue;
d[v] = d[u] + 1;
up[v][0] = u;
dfs(v, u);
}
}
int dp(int u, int fa)
{
for(int i = head[u]; ~i; i = e[i].next)
{
int v = e[i].to;
if(v == fa) continue;
dp(v, u);
f[u] += f[v];
}
}
void init()
{
dfs(1, -1);
_for(j, 1, MAXM)
_for(i, 1, n)
up[i][j] = up[up[i][j - 1]][j - 1];
}
int lca(int u, int v)
{
if(d[u] < d[v]) swap(u, v);
for(int i = MAXM; i >= 0; i--)
if(d[up[u][i]] >= d[v])
u = up[u][i];
if(u == v) return u;
for(int i = MAXM; i >= 0; i--)
if(up[u][i] != up[v][i])
u = up[u][i], v = up[v][i];
return up[u][0];
}
int main()
{
read(n);read(m);
memset(head, -1, sizeof(head)); num = 0;
REP(i, 1, n)
{
int u, v; read(u), read(v);
AddEdge(u, v); AddEdge(v, u);
}
init();
_for(i, 1, m)
{
int u, v; read(u), read(v);
f[u]++; f[v]++; f[lca(u, v)] -= 2;
}
dp(1, -1);
int ans = 0;
_for(i, 2, n)
{
if(f[i] == 1) ans++;
if(f[i] == 0) ans += m;
}
printf("%d\n", ans);
return 0;
}
LCA题集的更多相关文章
- 【转】Tarjan&LCA题集
转自:http://blog.csdn.net/shahdza/article/details/7779356 [HDU][强连通]:1269 迷宫城堡 判断是否是一个强连通★2767Proving ...
- ACM题集以及各种总结大全!
ACM题集以及各种总结大全! 虽然退役了,但是整理一下,供小弟小妹们以后切题方便一些,但由于近来考试太多,顾退役总结延迟一段时间再写!先写一下各种分类和题集,欢迎各位大牛路过指正. 一.ACM入门 关 ...
- ACM题集以及各种总结大全(转)
ACM题集以及各种总结大全! 虽然退役了,但是整理一下,供小弟小妹们以后切题方便一些,但由于近来考试太多,顾退役总结延迟一段时间再写!先写一下各种分类和题集,欢迎各位大牛路过指正. 一.ACM入门 关 ...
- 全国各大 oj 分类题集...
各种题集从易到难刷到手软 你准备好了吗? 准备剁手吧
- 组合数取模&&Lucas定理题集
题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020 输出组合数C(n, m) mod p (1 ...
- Bug是一种财富-------研发同学的错题集、测试同学的遗漏用例集
此文已由作者王晓明授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 各位看官,可能看到标题的你一定认为这是一篇涉嫌"炒作"的文章,亦或是为了吸引眼球而起的标 ...
- 数位dp题集
题集见大佬博客 不要62 入门题,检验刚才自己有没有看懂 注意一些细节. 的确挺套路的 #include<bits/stdc++.h> #define REP(i, a, b) for(r ...
- 二级C语言题集
时间:2015-5-13 18:01 在131题之后是按考点分类的题集,有需要的朋友可以看一下 ---------------------------------------------------- ...
- LCA入门题集小结
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 题目: How far away ? Time Limit: 2000/1000 MS (Jav ...
随机推荐
- php循环练习题
1.通过for循环将数组中值求和.求平均值 <?php $num=[1,2,3,4,5,6,7,8,9]; $sum = 0; for ($i=0,$n=count($num); $i < ...
- crm高速开发之Entity
我们在后台代码里面操作Entity的时候,基本上是这样写的: /* 创建者:菜刀居士的博客 * 创建日期:2014年07月5号 */ namespace Net.CRM.Entity { ...
- HDU 4345
细心点想,就明白了,题目是求和为N的各数的最小公倍数的种数.其实就是求N以内的各素数的不同的组合(包含他们的次方),当然,是不能超过N的.用Dp能解决.和背包差不多. #include <ios ...
- Java&Xml教程(十一)JAXB实现XML与Java对象转换
JAXB是Java Architecture for XML Binding的缩写,用于在Java类与XML之间建立映射,可以帮助开发人员非常方便的將XML和Java对象进行相互转换. 本文以一个简单 ...
- 广东工业大学2016校赛决赛-网络赛 1169 Problem A: Krito的讨伐 优先队列
Problem A: Krito的讨伐 Description Krito终于干掉了99层的boss,来到了第100层.第100层可以表示成一颗树,这棵树有n个节点(编号从0到n-1),树上每一个节点 ...
- xargs用例一个
ls -a *.doc|awk -F. '{print $1}' |xargs -I {} java -jar ~/soft/jodconverter-2.2.2/lib/jodconverter-c ...
- Python·Jupyter Notebook各种使用方法记录
标签(空格分隔): Python 一 Jupyter NoteBook的安装 1 新版本Anaconda自带Jupyter 2 老版本Anacodna需自己安装Jupyter 二 更改Jupyter ...
- Java悲观锁和乐观锁
悲观的并发策略——Synchronized互斥锁 互斥锁是最常见的同步手段,在并发过程中,当多条线程对同一个共享数据竞争时,它保证共享数据同一时刻只能被一条线程使用,其他线程只有等到锁释放后才能重新进 ...
- Visual Studio2013下Magick++配置方法
声明:本文系作者原创,如需转载请保持文章完整并注明出处(http://blog.csdn.net/u010281174/article/details/52224829). ImageMagick是一 ...
- Repeater 中 OnItemCommand 用法
<table> <asp:Repeater ID="rptList" runat="server"OnItemCommand="rp ...