1.普通轮询算法

轮询(Round Robin,RR)是依次将用户的访问请求,按循环顺序分配到web服务节点上,从1开始到最后一台服务器节点结束,然后再开始新一轮的循环。这种算法简单,但是没有考虑到每台节点服务器的具体性能,请求分发往往不均衡。

代码实现:

/**
* 普通轮询算法
*/public class RoundRobin {
private static Integer index = 0;
private static List<String> nodes = new ArrayList<>();
// 准备模拟数据
static {
nodes.add("192.168.1.101");
nodes.add("192.168.1.103");
nodes.add("192.168.1.102");
System.out.println("普通轮询算法的所有节点:"+nodes);//打印所有节点
} // 关键代码
public String selectNode(){
String ip = null;
synchronized (index){
// 下标复位
if(index>=nodes.size()) index = 0;
ip = nodes.get(index);
index++;
}
return ip;
} // 并发测试:两个线程循环获取节点
public static void main(String[] args) {
new Thread(() -> {
RoundRobin roundRobin1 = new RoundRobin();
for (int i=1;i<=5;i++){
String serverIp = roundRobin1.selectNode();
System.out.println(Thread.currentThread().getName()+"==第"+i+"次获取节点:"+serverIp);
}
}).start(); RoundRobin roundRobin2 = new RoundRobin();
for (int i=1;i<=nodes.size();i++){
String serverIp = roundRobin2.selectNode();
System.out.println(Thread.currentThread().getName()+"==第"+i+"次获取节点:"+serverIp);
}
}
}

执行结果:不同线程访问,结果依旧是按顺序循环分配节点

普通轮询算法的所有节点:[192.168.1.101, 192.168.1.103, 192.168.1.102]

main==第1次获取节点:192.168.1.101

Thread-0==第1次获取节点:192.168.1.103

Thread-0==第2次获取节点:192.168.1.102

Thread-0==第3次获取节点:192.168.1.101

Thread-0==第4次获取节点:192.168.1.103

Thread-0==第5次获取节点:192.168.1.102

main==第2次获取节点:192.168.1.101

main==第3次获取节点:192.168.1.103

2.加权轮询算法

加权轮询(Weighted Round Robin,WRR)是根据设定的权重值来分配访问请求,权重值越大的,被分到的请求数也就越多。一般根据每台节点服务器的具体性能来分配权重。

2.1.实现方式一

将需要轮询的所有节点按权重数循环生成一个List 集合,然后就跟普通轮询算法一样,来一个、分配一个、进1位。

例如:

所有节点信息:{{“192.168.1.100“,5},{“192.168.1.101“,1},{“192.168.1.102“,3}}

那么生成的List 集合为:

{“192.168.1.100“,

“192.168.1.100“,

“192.168.1.100“,

“192.168.1.100“,

“192.168.1.100“,

“192.168.1.101“,

“192.168.1.102“,

“192.168.1.102“,

“192.168.1.102“}

后面就是普通轮询算法的逻辑

代码实现:

类似于二维数组 降维成 一维数组,然后使用普通轮询

/**
* 简单版的加权轮询
*/public class WeightedRoundRobinSimple {
private static Integer index = 0;
private static Map<String,Integer> mapNodes = new HashMap<>(); // 准备模拟数据
static {
mapNodes.put("192.168.1.101",1);
mapNodes.put("192.168.1.102",3);
mapNodes.put("192.168.1.103",2);
/* -- 以下代码只为了方便查看所有节点,删除不影响 -- S */
List<String> nodes = new ArrayList<>();
Iterator<Map.Entry<String, Integer>> iterator = mapNodes.entrySet().iterator();
while (iterator.hasNext()){
Map.Entry<String, Integer> entry = iterator.next();
String key = entry.getKey();
for (int i=0;i<entry.getValue();i++){
nodes.add(key);
}
}
System.out.println("简单版的加权轮询:"+nodes);//打印所有节点
/* -- 以上代码只为了方便查看所有节点,删除不影响-- E */
} // 关键代码:类似于二维数组 降维成 一维数组,然后使用普通轮询
public String selectNode(){
List<String> nodes = new ArrayList<>();
Iterator<Map.Entry<String, Integer>> iterator = mapNodes.entrySet().iterator();
while (iterator.hasNext()){
Map.Entry<String, Integer> entry = iterator.next();
String key = entry.getKey();
for (int i=0;i<entry.getValue();i++){
nodes.add(key);
}
}
String ip = null;
synchronized (index){
// 下标复位
if(index>=nodes.size()) index = 0;
ip = nodes.get(index);
index++;
}
return ip;
} // 并发测试:两个线程循环获取节点
public static void main(String[] args) {
new Thread(() -> {
WeightedRoundRobinSimple roundRobin1 = new WeightedRoundRobinSimple();
for (int i=1;i<=6;i++){
String serverIp = roundRobin1.selectNode();
System.out.println(Thread.currentThread().getName()+"==第"+i+"次获取节点:"+serverIp);
}
}).start(); WeightedRoundRobinSimple roundRobin2 = new WeightedRoundRobinSimple();
for (int i=1;i<=6;i++){
String serverIp = roundRobin2.selectNode();
System.out.println(Thread.currentThread().getName()+"==第"+i+"次获取节点:"+serverIp);
}
}
}

执行结果:两个线程循环测试,输出结果会出现交替分配到不同的IP,但最终的效果都是一个个按顺序分配,类似于普通轮询算法。

简单版的加权轮询:[192.168.1.103, 192.168.1.103, 192.168.1.101, 192.168.1.102, 192.168.1.102, 192.168.1.102]

main==第1次获取节点:192.168.1.103

main==第2次获取节点:192.168.1.103

main==第3次获取节点:192.168.1.101

main==第4次获取节点:192.168.1.102

main==第5次获取节点:192.168.1.102

Thread-0==第1次获取节点:192.168.1.102

Thread-0==第2次获取节点:192.168.1.103

main==第6次获取节点:192.168.1.103

Thread-0==第3次获取节点:192.168.1.101

Thread-0==第4次获取节点:192.168.1.102

Thread-0==第5次获取节点:192.168.1.102

Thread-0==第6次获取节点:192.168.1.102

2.2.实现方式二(重点难点)

本文的重点难点。

在实现方式一的算法中可以很明显的看到,同权重的IP会被连续分配,也就是说同一个IP在短时间内收到不同的请求,过了这个连续点,就要等到下一轮才会被分配到,并没有做到均匀分配节点。

实现方式二将尽可能地均匀分配每个节点,节点分配不再是连续的,但最终的权重比和上一个方式一样,这种加权轮询又被称为平滑加权轮询。

理解关键的几个参数和算法逻辑,方便理解代码的实现。

2.2.1.概述

关键参数

  • ip:负载IP
  • weight:权重,保存配置的权重
  • effectiveWeight:有效权重,轮询的过程权重可能变化
  • currentWeight:当前权重,比对该值大小获取节点

注意几个点:

weight 权重,在整个过程不会对它做修改,只用来保存配置时的权重参数值。如果直接拿weight 运算而不保存配置的最原始权重参数,那么将会丢失最关键的用户配置的权重参数。

effectiveWeight 有效权重,在整个过程可能会变化,初始值等于weight,主要用于当节点出现分配失败时降低权重值,成功时提高权重值(但不能大于weight值),本案例为了简化算法,并未加入这功能,因此本案例中effectiveWeight始终等于weight。

currentWeight 当前权重,通过循环所有节点比对该值大小来分配权重最大的节点,初始值等于weight。

三个权重参数的变化情况

仅仅针对本案例,因为本案例为了简化算法,并未加入[节点出现分配失败时降低权重值,成功时提高权重值(但不能大于weight值)的功能],所以有效权重effectiveWeight 不会发生变化。

  • 第一次加权轮询时:currentWeight = weight = effectiveWeight;
  • 后面每次加权轮询时:currentWeight 的值都会不断变化,weight 和effectiveWeight 的值不变;
  • 被分配的节点的currentWeight = currentWeight - 权重之和
  • 所有节点的currentWeight = currentWeight + effectiveWeight

2.2.2.举个例子理解算法

你面前有三个瓶子A、B、C,分别装有1L、3L、2L水。

第一轮分配情况:B多,所以把B瓶子的3L水,分1L给A,分2L给C(按权重分),分完之后:A、B、C分别为:2L、0L、4L

第二轮分配情况:C多,所以把C瓶子的4L水,分1L给A,分3L给B(按权重分),分完之后:A、B、C分别为:3L、3L、0L

第三轮分配情况:A和B一样多,那么拿谁去分呢?拿谁其实都一样(算法中写了A大于B才选A,现在等于,所以不选A),所以把B瓶子的3L水,分1L给A,分2L给C(按权重分),分完之后:A、B、C分别为:4L、0L、2L

然后不断的进行下去……

简化成数学逻辑(代码实现)的关键两步

  • 被分配的节点的currentWeight = currentWeight - 权重之和
  • 所有节点的currentWeight = currentWeight + effectiveWeight

下面通过阅读代码来理解

2.2.3.代码实现

节点对象

/**
* String ip:负载IP
* final Integer weight:权重,保存配置的权重
* Integer effectiveWeight:有效权重,轮询的过程权重可能变化
* Integer currentWeight:当前权重,比对该值大小获取节点
* 第一次加权轮询时:currentWeight = weight = effectiveWeight
* 后面每次加权轮询时:currentWeight 的值都会不断变化,其他权重不变
*/public class Node implements Comparable<Node>{
private String ip;
private final Integer weight;
private Integer effectiveWeight;
private Integer currentWeight; public Node(String ip,Integer weight){
this.ip = ip;
this.weight = weight;
this.effectiveWeight = weight;
this.currentWeight = weight;
} public Node(String ip, Integer weight, Integer effectiveWeight, Integer currentWeight) {
this.ip = ip;
this.weight = weight;
this.effectiveWeight = effectiveWeight;
this.currentWeight = currentWeight;
} public String getIp() {
return ip;
} public void setIp(String ip) {
this.ip = ip;
} public Integer getWeight() {
return weight;
} public Integer getEffectiveWeight() {
return effectiveWeight;
} public void setEffectiveWeight(Integer effectiveWeight) {
this.effectiveWeight = effectiveWeight;
} public Integer getCurrentWeight() {
return currentWeight;
} public void setCurrentWeight(Integer currentWeight) {
this.currentWeight = currentWeight;
} @Override
public int compareTo(Node node) {
return currentWeight > node.currentWeight ? 1 : (currentWeight.equals(node.currentWeight) ? 0 : -1);
} @Override
public String toString() {
return "{ip='" + ip + "', weight=" + weight + ", effectiveWeight=" + effectiveWeight + ", currentWeight=" + currentWeight + "}";
}
}

加权轮询算法

/**
* 加权轮询算法
*/public class WeightedRoundRobin { private static List<Node> nodes = new ArrayList<>();
// 权重之和
private static Integer totalWeight = 0;
// 准备模拟数据
static {
nodes.add(new Node("192.168.1.101",1));
nodes.add(new Node("192.168.1.102",3));
nodes.add(new Node("192.168.1.103",2));
nodes.forEach(node -> totalWeight += node.getEffectiveWeight());
} /**
* 按照当前权重(currentWeight)最大值获取IP
* @return Node
*/
public Node selectNode(){
if (nodes ==null || nodes.size()<=0) return null;
if (nodes.size() == 1) return nodes.get(0); Node nodeOfMaxWeight = null; // 保存轮询选中的节点信息
synchronized (nodes){
// 打印信息对象:避免并发时打印出来的信息太乱,不利于观看结果
StringBuffer sb = new StringBuffer();
sb.append(Thread.currentThread().getName()+"==加权轮询--[当前权重]值的变化:"+printCurrentWeight(nodes)); // 选出当前权重最大的节点
Node tempNodeOfMaxWeight = null;
for (Node node : nodes) {
if (tempNodeOfMaxWeight == null)
tempNodeOfMaxWeight = node;
else
tempNodeOfMaxWeight = tempNodeOfMaxWeight.compareTo(node) > 0 ? tempNodeOfMaxWeight : node;
}
// 必须new个新的节点实例来保存信息,否则引用指向同一个堆实例,后面的set操作将会修改节点信息
nodeOfMaxWeight = new Node(tempNodeOfMaxWeight.getIp(),tempNodeOfMaxWeight.getWeight(),tempNodeOfMaxWeight.getEffectiveWeight(),tempNodeOfMaxWeight.getCurrentWeight()); // 调整当前权重比:按权重(effectiveWeight)的比例进行调整,确保请求分发合理。
tempNodeOfMaxWeight.setCurrentWeight(tempNodeOfMaxWeight.getCurrentWeight() - totalWeight);
sb.append(" -> "+printCurrentWeight(nodes)); nodes.forEach(node -> node.setCurrentWeight(node.getCurrentWeight()+node.getEffectiveWeight())); sb.append(" -> "+printCurrentWeight(nodes));
System.out.println(sb); //打印权重变化过程
}
return nodeOfMaxWeight;
} // 格式化打印信息
private String printCurrentWeight(List<Node> nodes){
StringBuffer stringBuffer = new StringBuffer("[");
nodes.forEach(node -> stringBuffer.append(node.getCurrentWeight()+",") );
return stringBuffer.substring(0, stringBuffer.length() - 1) + "]";
} // 并发测试:两个线程循环获取节点
public static void main(String[] args){
Thread thread = new Thread(() -> {
WeightedRoundRobin weightedRoundRobin1 = new WeightedRoundRobin();
for(int i=1;i<=totalWeight;i++){
Node node = weightedRoundRobin1.selectNode();
System.out.println(Thread.currentThread().getName()+"==第"+i+"次轮询选中[当前权重最大]的节点:" + node + "\n");
}
});
thread.start();
//
WeightedRoundRobin weightedRoundRobin2 = new WeightedRoundRobin();
for(int i=1;i<=totalWeight;i++){
Node node = weightedRoundRobin2.selectNode();
System.out.println(Thread.currentThread().getName()+"==第"+i+"次轮询选中[当前权重最大]的节点:" + node + "\n");
} }
}

执行结果:

main==加权轮询--[当前权重]值的变化:[1,3,2] -> [1,-3,2] -> [2,0,4]
main==第1次轮询选中[当前权重最大]的节点:{ip='192.168.1.102', weight=3, effectiveWeight=3, currentWeight=3}

Thread-0==加权轮询--[当前权重]值的变化:[2,0,4] -> [2,0,-2] -> [3,3,0]
Thread-0==第1次轮询选中[当前权重最大]的节点:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=4}

main==加权轮询--[当前权重]值的变化:[3,3,0] -> [3,-3,0] -> [4,0,2]
main==第2次轮询选中[当前权重最大]的节点:{ip='192.168.1.102', weight=3, effectiveWeight=3, currentWeight=3}

main==加权轮询--[当前权重]值的变化:[4,0,2] -> [-2,0,2] -> [-1,3,4]
main==第3次轮询选中[当前权重最大]的节点:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=4}

Thread-0==加权轮询--[当前权重]值的变化:[-1,3,4] -> [-1,3,-2] -> [0,6,0]
Thread-0==第2次轮询选中[当前权重最大]的节点:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=4}

main==加权轮询--[当前权重]值的变化:[0,6,0] -> [0,0,0] -> [1,3,2]
main==第4次轮询选中[当前权重最大]的节点:{ip='192.168.1.102', weight=3, effectiveWeight=3, currentWeight=6}

Thread-0==加权轮询--[当前权重]值的变化:[1,3,2] -> [1,-3,2] -> [2,0,4]
Thread-0==第3次轮询选中[当前权重最大]的节点:{ip='192.168.1.102', weight=3, effectiveWeight=3, currentWeight=3}

main==加权轮询--[当前权重]值的变化:[2,0,4] -> [2,0,-2] -> [3,3,0]
main==第5次轮询选中[当前权重最大]的节点:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=4}

Thread-0==加权轮询--[当前权重]值的变化:[3,3,0] -> [3,-3,0] -> [4,0,2]
Thread-0==第4次轮询选中[当前权重最大]的节点:{ip='192.168.1.102', weight=3, effectiveWeight=3, currentWeight=3}

main==加权轮询--[当前权重]值的变化:[4,0,2] -> [-2,0,2] -> [-1,3,4]
main==第6次轮询选中[当前权重最大]的节点:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=4}

Thread-0==加权轮询--[当前权重]值的变化:[-1,3,4] -> [-1,3,-2] -> [0,6,0]
Thread-0==第5次轮询选中[当前权重最大]的节点:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=4}

Thread-0==加权轮询--[当前权重]值的变化:[0,6,0] -> [0,0,0] -> [1,3,2]
Thread-0==第6次轮询选中[当前权重最大]的节点:{ip='192.168.1.102', weight=3, effectiveWeight=3, currentWeight=6}

为了方便分析,简化两线程执行后的结果

[当前权重]值的变化:[1,3,2] -> [1,-3,2] -> [2,0,4]

[当前权重]值的变化:[2,0,4] -> [2,0,-2] -> [3,3,0]

[当前权重]值的变化:[3,3,0] -> [3,-3,0] -> [4,0,2]

[当前权重]值的变化:[4,0,2] -> [-2,0,2] -> [-1,3,4]

[当前权重]值的变化:[-1,3,4] -> [-1,3,-2] -> [0,6,0]

[当前权重]值的变化:[0,6,0] -> [0,0,0] -> [1,3,2]

[当前权重]值的变化:[1,3,2] -> [1,-3,2] -> [2,0,4]

[当前权重]值的变化:[2,0,4] -> [2,0,-2] -> [3,3,0]

[当前权重]值的变化:[3,3,0] -> [3,-3,0] -> [4,0,2]

[当前权重]值的变化:[4,0,2] -> [-2,0,2] -> [-1,3,4]

[当前权重]值的变化:[-1,3,4] -> [-1,3,-2] -> [0,6,0]

[当前权重]值的变化:[0,6,0] -> [0,0,0] -> [1,3,2]

因为整个过程只有当前权重发生变化,所以分析清楚它就明白了整个过程。

结论:

分配完成后当前权重发生变化,但权限之和还是等于最初值

每6轮(1+3+2权重)就出现权重全部为0,所以会出现重新循环,6正好等于权重之和,权重比等于1/6 : 3/6 : 2/6;

a=权重1,b=权重3,c=权重2,那么权重变化的6(a+b+c)次中,分配情况为:b c b a c b,很明显,每个节点均匀按权重分配,节点分配不再是连续的。这也是最重要的结论,正是实现方式二在文初提到的要实现的关键点。

该算法在权重比相差很大时,比如:A=1,B=5,那这个算法的结果就跟方式一没啥区别了,分配结果就变成了:{A,B,B,B,B,B},既然没区别,那根据算法复杂情况,那肯定方式一更好了,所以方式一和方式二可以互补,可以根据权重比选择不同的算法。

留下悬念

第一点:节点出现分配失败时降低有效权重值,成功时提高有效权重值(但不能大于weight值)的功能。理解了方式二,后面再加这块功能进去就很好理解了;

第二点:该算法实现的背后数学证明,用的是什么数学理论?

Java往期文章

Java全栈学习路线、学习资源和面试题一条龙

我心里优秀架构师是怎样的?

免费下载经典编程书籍

Java实现负载均衡算法--轮询和加权轮询的更多相关文章

  1. 一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)

    这里是参考B站上的大佬做的面试题笔记.大家也可以去看视频讲解!!! 文章目录 1.简述Redis事务实现 2.redis集群方案 3.redis主从复制的核心原理 4.CAP理论,BASE理论 5.负 ...

  2. Nginx负载均衡的4种方式 :轮询-Round Robin 、Ip地址-ip_hash、最少连接-least_conn、加权-weight=n

    这里对负载均衡概念和nginx负载均衡实现方式做一个总结: 先说一下负载均衡的概念: Load Balance负载均衡是用于解决一台机器(一个进程)无法解决所有请求而产生的一种算法. 我们知道单台服务 ...

  3. 系统架构之负载均衡【F5\nginx\LVS\DNS轮询\】

    在做系统架构规划的时候,负载均衡,HA(高可用性集群,是保证业务连续性的有效解决方案,一般有两个或两个以上的节点,且分为活动节点及备用节点,当活动节点出现故障的时候,由备用节点接管)都是经常需要考虑的 ...

  4. 负载均衡算法,轮询方式 大话设计模式之工厂模式 C#

    负载均衡算法,轮询方式 2018-04-13 17:37 by 天才卧龙, 13 阅读, 0 评论, 收藏, 编辑 学无止境,精益求精 十年河东,十年河西,莫欺少年穷 学历代表你的过去,能力代表你的现 ...

  5. 几种简单的负载均衡算法及其Java代码实现

    什么是负载均衡 负载均衡,英文名称为Load Balance,指由多台服务器以对称的方式组成一个服务器集合,每台服务器都具有等价的地位,都可以单独对外提供服务而无须其他服务器的辅助.通过某种负载分担技 ...

  6. SpringCloud全家桶学习之客户端负载均衡及自定义负载均衡算法----Ribbon(三)

    一.Ribbon是什么? Spring Cloud Ribbon是基于Netflix Ribbon实现的一套客户端  负载均衡的工具(这里区别于nginx的负载均衡).简单来说,Ribbon是Netf ...

  7. Round-Robin负载均衡算法及其实现原理

    毫无疑问,随着互联网.移动网络接入成本的降低,互联网正在日益深入地走入我们的生活,越来越成为人们获取信息的高效平台,ICP行业也顺势呈现出强劲的成长趋势,成为互联网迅猛发展形势下最大的受益者,也直接促 ...

  8. Nginx几种负载均衡算法及配置实例

    本文装载自: https://yq.aliyun.com/articles/114683 Nginx负载均衡(工作在七层"应用层")功能主要是通过upstream模块实现,Ngin ...

  9. f5负载均衡算法

    负载均衡使用一种算法或公式来确定由哪一个后台服务器接收流量 负载均衡是基于连接的 1.静态负载均衡算法:以固定方式分发连接 轮询算法(Round Robin):将请求依次顺序循环地分发给服务器,从1到 ...

随机推荐

  1. Java基础—String构造方法

    Java基础--String构造方法 public String(): 创建一个空表字符串对象,不包含任何内容 public String(char[]chs): 根据字符数组的内容,来创建字符串对象 ...

  2. 记录java中常用的英文单词01

    专业缩写 POJO(plain ordinary java object)--简单的java对象 Spring-jdbc--为了使JDBC更加易于使用,spring在JDBC API上定义了一个抽象层 ...

  3. Struts2搭建及利用OGNL表达式弹出计算器

    0x01 环境搭建 1.创建Struts2应用 创建一个动态网站项目 2.配置Tomcat启动环境 3.在WebContent目录下的WEB-INF文件夹中创建web.xml,Tomcat启动时会加载 ...

  4. 关于.NET 6.0 Crossgen2的一些研究

    NET 6.0引入了Crossgen工具的后续版本Crossgen2,这个工具提供了程序提前(AOT)编译的能力. 什么是CrossGen? 我们日常开发时使用C#编译器CSC编译一个.NET程序集, ...

  5. 测试odbc连接sqlsever数据库是否成功的代码

    1 #include<stdio.h> 2 #include<stdlib.h> 3 #include<windows.h> 4 #include<sql.h ...

  6. Mysql之Explain关键字及常见的优化手段

    Explain关键字字段描述: Explain关键字字段详情描述 id 我们写的查询语句一般都以SELECT关键字开头,比较简单的查询语句里只有一个SELECT关键字,但是下边两种情况下在一条查询语句 ...

  7. 建立META-INF/spring.factories文件的意义何在

    平常我们如何将Bean注入到容器当中 @Configuration @EnableConfigurationProperties(HelloProperties.class) public class ...

  8. java-反射-注解-json-xml

    反射: 框架设计的灵魂 框架:半成品软件.可以再框架的基础上进行软件开发,简化代码 定义:将类的各个组成部分封装为其他对象,这就是反射机制 好处: 可以再程序运行过程中,操作这些对象 可以解耦,提高程 ...

  9. java集合类框架的基本接口有哪些

    集合类接口指定了一组叫做元素的对象.集合类接口的每一种具体的实现类都可以以他自己的方式对元素进行保存和排序.有的集合允许重复的键,有些不允许. java集合类里面最基本 的接口: Collection ...

  10. PIC16F877A.H头文件详细注释

    /* * Header file for the Microchip  * PIC 16F873A chip * PIC 16F874A chip * PIC 16F876A chip * PIC 1 ...