Codeforces Round #851 (Div. 2) A-E
A
题意
给一串只包含 \(1,2\) 的数,找到最小的 \(k\) 使得 \(\prod_{i=1}^k a_i = \prod_{i=k+1}^n a_i\) 。
题解
知识点:枚举。
因为只有 \(1,2\) ,所以考虑左右两边 \(2\) 的个数即可。
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
int a[1007];
bool solve() {
int n;
cin >> n;
int cnt = 0;
for (int i = 1;i <= n;i++) cin >> a[i], cnt += a[i] == 2;
if (cnt & 1) return false;
int cntt = 0;
for (int i = 1;i <= n;i++) {
cntt += a[i] == 2;
if (cntt == cnt - cntt) {
cout << i << '\n';
break;
}
}
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
B
题意
给定 \(n\) ,找到 \(a,b\) 满足 \(a+b = n\) 且 \(a,b\) 各自数位之和相差不超过 \(1\) 。
题解
知识点:构造。
我们对 \(n\) 的每位数拆分,若为偶数直接对半分,若为奇数则对半分后交替取大小部分。
时间复杂度 \(O(n)\)
空间复杂度 \(O(1)\)
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
bool solve() {
int n;
cin >> n;
int a = 0, b = 0;
bool f = 0;
int base = 1;
while (n) {
int val = n % 10;
int x = val / 2, y = val - val / 2;
if (x != y) {
if (f) swap(x, y);
f ^= 1;
}
a += x * base;
b += y * base;
n /= 10;
base *= 10;
}
cout << a << ' ' << b << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
C
题意
将长为 \(2n\) 的排列中的数,两两配对 \(\{(a_1,b_1),\cdots ,(a_n,b_n)\}\),使得 \(\{ a_1+b_1,\cdots , a_n+b_n \}\) 满足从小到大排序后是连续上升的整数。
题解
知识点:构造。
\(\sum_{i=1}^{2n} i = n(2n+1)\) ,构造 \(n\) 对后平均值是 \(2n+1\) ,为了保证数对是连续上升的,一定从 \(2n+1\) 开始两侧同时扩展。
\(n\) 为偶数时,一共有偶数对无法做到两侧同时扩展的,所以无解。
\(n\) 为奇数时,只需构造 \((1,2n),\cdots (n,2n-\left\lfloor \dfrac{n}{2} \right\rfloor)\) 以及 \((2,2n-\left\lfloor \dfrac{n}{2} \right\rfloor - 1),\cdots ,(n-1,2n - 2\left\lfloor \dfrac{n}{2} \right\rfloor)\) 即可。
时间复杂度 \(O(n)\)
空间复杂度 \(O(1)\)
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
bool solve() {
int n;
cin >> n;
if (!(n & 1)) return false;
cout << "YES" << '\n';
for (int i = 1;i <= n;i += 2) cout << i << ' ' << 2 * n - i / 2 << '\n';
for (int i = 2;i <= n;i += 2) cout << i << ' ' << 2 * n - n / 2 - i / 2 << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << "NO" << '\n';
}
return 0;
}
D
题意
给定坐标轴上 \(n\) 个点,坐标为 \(x_i\) ,选中不少于 \(2\) 个点,可以进行一场游戏。
对于一场游戏,每个点在开始前会固定移动方向,移动方向为离自己最近的另一个点的方向,若两个方向最近的点距离一样,则往左边走。游戏开始后,每个点在碰到另一个点后会立刻停止。一场游戏的价值为,游戏最后存在点的不同的坐标个数。
问,对于所有选点方案,都进行一场游戏后的价值总和。
题解
知识点:枚举,组合数学。
每个贡献一定由一组相邻的且开始后相互靠近的点对产生,对于不相邻的点对他们不会产生任何贡献。因此,考虑枚举所有点对,计算满足相邻且开始后会相互靠近的方案数,求和便是答案。
对于一组点对 \((i,j)\) ,令 \(d = x_j - x_i\) ,可以用二分计算出最后一个小于 \(x_i-d\) 的位置 \(l\) ,和第一个大于等于 \(x_j+d\) 的位置 \(r\) ,于是 \([1,l],[r,n]\) 的点能保证 \((i,j)\) 两点相互靠近产生一次贡献,这些点可选可不选,共计产生 \(2^{l+n-r+1}\) 的贡献。
时间复杂度 \(O(n^2 \log n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int P = 1e9 + 7;
int x[3007];
int p[3007];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> x[i];
p[0] = 1;
for (int i = 1;i <= n;i++) p[i] = 2LL * p[i - 1] % P;
int ans = 0;
for (int i = 1;i <= n;i++) {
for (int j = i + 1;j <= n;j++) {
int d = x[j] - x[i];
int l = lower_bound(x + 1, x + n + 1, x[i] - d) - x - 1;
int r = lower_bound(x + 1, x + n + 1, x[j] + d) - x;
(ans += p[l + n - r + 1]) %= P;
}
}
cout << ans << '\n';
return 0;
}
E
题意
给定一个数组 \(a_i\) 。设段的集合 \(S\) 满足:
- 元素形式为段 \([x,y]\) ,其中 \(1\leq x\leq y\leq n\) 。
- 所有段没有交集,即任意两个段 \(A ,B\) 不存在 \(x\) 满足 \(x \in A\) 且 \(x \in B\) 。
- 所有段 \([x,y]\) 满足 \(\sum_{i=x}^y a_i \geq 0\) 。
一个段集合 \(S\) 的价值为,所有其中元素段长度的和,即 \(\sum_{[x,y] \in S} (y-x+1)\) 。
求对于数组 \(a_i\) 所有可能的 \(S\) 的价值最大值。
题解
知识点:线性dp,树状数组,离散化。
设 \(s_i\) 为 \(\sum_{j=1}^i a_j\) 。
设 \(f_i\) 为 \([1,i]\) 中 \(S\) 价值的最大值。有转移方程:
- 若不选 \(a_i\) ,则 \(f_i = \max(f_i,f_{i-1})\) 。
- 若选 \(a_i\) ,则考虑 \(j \in [0,i-1]\) 满足 \(s_i - s_j \geq 0\) 中找到 \(f_j + i -j\) 的最大值。
对于2,朴素递推是 \(O(n^2)\) 的,考虑用数据结构优化。
注意到 \(f_j + i - j\) 中 \(i\) 是定值,我们只需要知道满足 \(s_j \leq s_i\) 的 \(j\) 中 \(f_j-j\) 的最大值即可。为了方便找到 \(s_j \leq s_i\) ,我们可以用一个以 \(s_i\) 作为下标,能查询前缀最大值的数据结构,树状数组和权值线段树都可以。其中,因为我们要求的是最大值,所以对于不同的 \(j\) 若有相同的 \(s\) ,我们取最大的 \(f_j-j\) 作为 \(s\) 对应的值不影响结果。
这里值域太大了,可以离散化,将前缀和的值映射为从小到大的排名即可。
时间复杂度 \(O(n \log n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
template<class T>
struct Fenwick {
int n;
vector<T> node;
Fenwick(int _n = 0) { init(_n); }
void init(int _n) {
n = _n;
node.assign(n + 1, T::e());
}
void update(int x, T val) {
for (int i = x;i <= n;i += i & -i)
node[i] += val;
}
T query(int x) {
T ans = T::e();
for (int i = x;i >= 1;i -= i & -i)
ans += node[i];
return ans;
}
};
struct T {
int val;
static T e() { return { (int)-1e9 }; }
T &operator+=(const T &x) { return val = max(val, x.val), *this; }
};
template<class T>
struct Discretization {
vector<T> uniq;
Discretization() {}
Discretization(const vector<T> &a) { init(a); }
void init(const vector<T> &a) {
uniq = a;
sort(uniq.begin() + 1, uniq.end());
uniq.erase(unique(uniq.begin() + 1, uniq.end()), uniq.end());
}
int get(T x) { return lower_bound(uniq.begin() + 1, uniq.end(), x) - uniq.begin(); }
};
ll s[200007];
int dp[200007];
int pos[200007];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> s[i], s[i] += s[i - 1];
Discretization<ll> dc(vector(s, s + n + 2));
for (int i = 0;i <= n;i++) pos[i] = dc.get(s[i]);
Fenwick<T> fw(dc.uniq.size() - 1);
dp[0] = 0;
fw.update(pos[0], { dp[0] - 0 });
for (int i = 1;i <= n;i++) {
dp[i] = max(dp[i - 1], fw.query(pos[i]).val + i);
fw.update(pos[i], { dp[i] - i });
}
cout << dp[n] << '\n';
return 0;
}
Codeforces Round #851 (Div. 2) A-E的更多相关文章
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
- Codeforces Round #354 (Div. 2) ABCD
Codeforces Round #354 (Div. 2) Problems # Name A Nicholas and Permutation standard input/out ...
- Codeforces Round #368 (Div. 2)
直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
- Codeforces Round #279 (Div. 2) ABCDE
Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems # Name A Team Olympiad standard input/outpu ...
- Codeforces Round #262 (Div. 2) 1003
Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...
- Codeforces Round #262 (Div. 2) 1004
Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...
- Codeforces Round #371 (Div. 1)
A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...
- Codeforces Round #268 (Div. 2) ABCD
CF469 Codeforces Round #268 (Div. 2) http://codeforces.com/contest/469 开学了,时间少,水题就不写题解了,不水的题也不写这么详细了 ...
- 贪心+模拟 Codeforces Round #288 (Div. 2) C. Anya and Ghosts
题目传送门 /* 贪心 + 模拟:首先,如果蜡烛的燃烧时间小于最少需要点燃的蜡烛数一定是-1(蜡烛是1秒点一支), num[g[i]]记录每个鬼访问时已点燃的蜡烛数,若不够,tmp为还需要的蜡烛数, ...
随机推荐
- TensorFlow深度学习!构建神经网络预测股票价格!⛵
作者:韩信子@ShowMeAI 深度学习实战系列:https://www.showmeai.tech/tutorials/42 TensorFlow 实战系列:https://www.showmeai ...
- 基于SqlSugar的开发框架循序渐进介绍(22)-- Vue3+TypeScript的前端工作流模块中实现统一的表单编辑和表单详情查看处理
在工作流页面中,除了特定的业务表单信息外,往往也需要同时展示通用申请单的相关信息,因此在页面设计的时候需要使用一些组件化的概念来实现动态的内容展示处理,本篇随笔介绍Vue3+TypeScript+El ...
- python-函数的参数与返回值
Python函数 4.1.函数初识 在编写程序的过程中,有某一功能代码块出现多次,但是为了提高编写的效率以及代码的重用,所以把具有独立功能的代码块组织为一个小模块,这就是函数 就是一系列Python语 ...
- Java常用开发文档及工具
一.实用工具/网站 1.PHP中文网:https://www.php.cn/ 2.Json工具:http://www.bejson.com/ 3.IT大哥导航:https://itdage.com/ ...
- Kettle基础及快速入门
(一)概述 1.ETL ETL(Extract-Transform-Load的缩写,即数据抽取.转换.装载的过程) ETL工具:Sqoop,DataX,Kettle,Talend等 2.Kettle介 ...
- 真正“搞”懂HTTP协议06之body的玩法(理论篇)
本来啊,本来,本来我在准备完善这个鸽了四年的系列的时候,是打算按照时间的顺序来完成的,好吧.我承认那个时候考虑的稍稍稍稍稍微有些不足,就是我忽略了HTTP协议的"模块性".因为虽然 ...
- Relational Learning with Gated and Attentive Neighbor Aggregator for Few-Shot Knowledge Graph Completion 小样本关系学习论文解读
小样本知识图补全--关系学习.利用三元组的邻域信息,提升模型的关系表示学习,来实现小样本的链接预测.主要应用的思想和模型包括:GAT.TransH.SLTM.Model-Agnostic Meta-L ...
- MyBatis详解(二)
前言 本篇幅是继 MyBatis详解(一)的下半部分. MyBatis执行Sql的流程分析 [1]基于前面已经将XML文件进行build解析了并且返回了SqlSessionFactory [1.1]那 ...
- Yearning建立流程和数据源进行测试
1.前提说明 前面已经搭建好了平台,并且接入了LDAP.邮箱和钉钉,现在就是建立一下数据源和流程来进行测试,如果有什么疑问可以看上一篇文章安装Yearning审核平台 2.建立流程 2.1 新建流程 ...
- 【FAQ】申请Health Kit权限的常见问题及解答
华为运动健康服务(HUAWEI Health Kit)提供原子化数据开放,用户数据被授权获取后,应用可通过接口访问运动健康数据,对相关数据进行增.删.改.查等操作.这篇文章汇总了申请开通Health ...