回归分析-2.X 简单线性回归
2.1
简单线性回归模型
y与x之间的关系假设
\(y=\beta_0+\beta_1x+\varepsilon\)
\(E(\varepsilon|x)=0\)
\(Var(\varepsilon|x)=\sigma^2~则~Var(y|x)=\sigma^2\) 同方差假定
2.2
回归参数的最小二乘估计
回归系数 \(\beta_0,~\beta_1\) 的估计
残差平方和
\[S(\hat{\beta}_0,\hat{\beta}_1)=\sum^n_{i=1}(y_i-\hat{\beta}_0-\hat{\beta}_1x_i)^2
\]
分别求偏导得到
\[\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
\]\[\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \cdot \bar{x} \cdot \bar{y}}{\sum_{i=1}^{n} x_{i}^{2}-n \cdot \bar{x}^{2}}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{S_{x y}}{S_{x x}}
\]
性质
\[\frac{\partial S}{\partial\beta_0}=\sum(y_i-\hat{\beta}_0-\hat{\beta}_1x_i)=0~\Rightarrow~\sum e_i=0
\]
\[\frac{\partial S}{\partial\beta_1}=\sum(y_i-\hat{\beta}_0-\hat{\beta}_1x_i)x_i=0~\Rightarrow
\]\[\sum e_ix_i=\sum (e_i-\bar{e})x_i=\sum(e_i-\bar{e})(x_i-\bar{x})=0
\]进而知道\(\{e_i\}与\{x_i\}\) 互不相关
\(\sum(e_i-\bar{e})(y_i-\bar{y})=\sum e_iy_i=\sum e_i(\hat{\beta}_0+\hat{\beta}_1x_i)=\hat{\beta}_0\sum e_i+\hat{\beta}_1\sum(e_ix_i)=0\)
因此得出\(\{e_i\}与\{y_i\}\) 互不相关
\(\{e_i\}与\{\hat{y}_i\}\) 互不相关
\(Cov(\bar{y},\hat{\beta}_1)=0\)
\[\begin{aligned}
Cov(\bar{y},\hat{\beta}_1)&=\frac{1}{n}\sum Cov(y_i,\hat{\beta}_1)\\
&=\frac{1}{n}Cov(\sum y_i,\sum c_iy_i)\\
&=\frac{1}{n}\sum (c_i\sigma^2)\\
&=0
\end{aligned}\]
- OLS是线性估计
- OLS是无偏估计
- LS估计的方差可计算为
随机误差方差的 \(\sigma^2\) 估计
均方误差
\[\begin{array} aMSE(\theta)=E(\hat{\theta}-\theta)^2=E(\hat{\theta}-E(\hat{\theta})+E(\hat{\theta})-\theta)^2=Var(\hat{\theta})+(bias(\hat{\theta}))^2\\
bias(\hat{\theta})=E(\hat{\theta})-\theta\end{array}\]
定义
\[S S_{\text {Res }}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}
\]\[\hat{\sigma}^{2}=\frac{S S_{\text {Res }}}{n-2}=M S_{\text {Res }}
\]
在第三章我们将证明 \(E\left(\hat{\sigma}^{2}\right)=\sigma^{2}\)
参数估计的标准误
\[s.e.(\hat{\beta}_1)=\sqrt{\frac{\frac{S S_{\text {res }}}{n-2}}{S_{xx}}}
\]\[s.e.(\hat{\beta}_0)=\sqrt{\frac{\frac{S S_{\text {res }}}{n-2}}{n}+\bar{x}^2\frac{\frac{S S_{\text {res }}}{n-2}}{S_{xx}}}
\]
2.3
斜率与截距的假设检验
OLS 估计的抽样分布
\[\hat{\beta}_{1}=\sum_{i=1}^{n} c_{i} y_{i}=\beta_{1}+\sum_{i=1}^{n} c_{i} \epsilon_{i}, \quad \hat{\beta}_{0}=\sum_{i=1}^{n} d_{i} y_{i}=\beta_{0}+\sum_{i=1}^{n} d_{i} \epsilon_{i}
\]\[\hat{\beta}_{1}\sim N(\beta_1,\frac{\sigma^2}{S_{xx}})~,~ ~ \hat{\beta}_{0}\sim N(\beta_0,\bar{x}^2\frac{\sigma^2}{S_{xx}})
\]
t 检验
由于
\[t_{0}=\frac{\hat{\beta}_{1}-\beta_{10}}{\hat{\sigma} / \sqrt{S_{x x}}}=\frac{\hat{\beta}_{1}-\beta_{10}}{\hat{\sigma} / \sqrt{S_{x x}}} \frac{\sigma}{\hat{\sigma}}=\frac{Z_{0}}{\sqrt{\frac{SS_{\text {res }}}{(n-2) \sigma^{2}}}}=Z_{0} / \sqrt{\frac{M S_{\text {res }}}{\sigma^{2}}} \sim t(n-2)
\]因此,为了检验两变量间是否有线性关系,将假设斜率 \(\beta_{10}=0\)
t检验统计量为
\[t=\frac{\hat{\beta}_1}{\hat{\sigma}/\sqrt{S_{xx}}}=\frac{\hat{\beta}_1}{s.e.(\hat{\beta}_1)}={\hat{\beta}_1}/{\sqrt{\frac{\frac{S S_{\text {res }}}{n-2}}{S_{xx}}}}
\]
p 值
\[pvalue=P(|t_{n-2}|>|\frac{\hat{\beta}_1}{s.e.(\hat{\beta}_1)}|)
\]
区间估计
参数的置信区间
\(\beta_0~\beta_1\)的置信区间
\[\frac{\hat{\beta}_{1}-\beta_{1}}{s . e .\left(\hat{\beta}_{1}\right)} \sim t({n-2}), \quad \frac{\hat{\beta}_{0}-\beta_{0}}{s . e .\left(\hat{\beta}_{0}\right)} \sim t({n-2})
\]可得 \(\beta_{i}\) 的 \(1-\alpha\) 置信区间为
\[\hat{\beta}_{i} \pm t_{n-2}(1-\alpha / 2) * \text { s.e. }\left(\hat{\beta}_{i}\right)
\]
响应变量均值 \(E(y|x_0)\) 的估计和置信区间
\(\because\)
\(E\left(y \mid x_{0}\right)=\beta_{0}+\beta_{1} x_{0}\)
\(\therefore\)
\(\hat{\mu}_{y \mid x_{0}}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}=\bar{y}+\hat{\beta}_{1}\left(x_{0}-\bar{x}\right)\)
而且
\[Var\left(y \mid x_{0}\right)=\sigma^2({\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}})
\]
可知
\[\frac{\hat{\mu}_{y \mid x_{0}}-\mu_{y \mid x_{0}}}{\hat{\sigma} \sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}}} \sim t({n-2})
\]
所以\(E(y|x_0)\) 的置信区间
\[\hat{\mu}_{y \mid x_{0}}\pm t_{n-2}(1-\alpha/2)\hat{\sigma} \sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}}
\]
新观测的预测
预测误差为
\[\begin{aligned}\psi&=y_{0}-\hat{y}_{0}\\
&=\beta_{0}+\beta_{1} x_{0}+\epsilon_{0}-(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0})\\
&=(\beta_{0}-\hat{\beta}_{0})+(\beta_{1}-\hat{\beta}_{1}) x_{0}+\epsilon_{0}
\end{aligned}\]
预测方差为
\[\begin{aligned}\operatorname{Var}(\psi)&=\operatorname{Var}(y_{0}-\hat{y}_{0})\\
&=\operatorname{Var}(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}+\epsilon_{0})\\
&=\sigma^2(1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}})
\end{aligned}\]
因此有
\[\frac{\psi-E(\psi)}{\sqrt{\operatorname{Var}(\psi)}}=\frac{y_{0}-\hat{y}_{0}}{\sigma \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}}} \sim N(0,1)
\]
所以
\[\frac{y_{0}-\hat{y}_{0}}{\hat{\sigma} \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}}} \sim t_{n-2}
\]
于是可得 \(1-\alpha\) 预测区间为
\[\hat{y}_{0} \pm t_{n-2}(1-\alpha / 2) \hat{\sigma} \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}}
\]
决定系数 \(R^2\)
可以定义
\[\begin{aligned}
S S_{\text {total }}&=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}\\
&=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}+\hat{y}_{i}-\bar{y}\right)^{2}\\
&=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}+\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}+2 \sum_{i=1}^{n} e_{i}\left(\hat{y}_{i}-\bar{y}\right) \triangleq \text { SSres }+\text { SSreg }
\end{aligned}\]
\[R^{2}=\frac{SS_{reg}}{SS_T}=\frac{S S_{t o t a l}-S S_{r e s}}{S S_{t o t a l}}
\]表明了 y 的样本变异中被 x 解释了的部分
可以推导出下列结论
\[R^{2}=\frac{\hat{\beta}_{1}^{2}}{\hat{\beta}_{1}^{2}+\frac{n-2}{n-1} \cdot \frac{\hat{\sigma}^{2}}{\hat{\sigma}_{x}^{2}}}
\]因此 \(R^{2}\) 较大, 并不意味着斜率 \(\hat{\beta}_{1}\) 就较大;
- 应该谨慎地解释和使用 \(R^{2}\) 。在实际问题里, \(R^{2}\) 作为模型拟合优 度的度量是有缺陷的, 一个典型的问题是, 在多元线性回归模型 里, 加人一个变量总会使得 \(R^{2}\) 升高, 因此用它做标准选择模型 的话, 总是会选取一个最复杂的模型。
- 若 \(R^{2}=1\) ,则完美拟合
- 若 \(R^{2}=0\) ,则两变量无关系
回归分析-2.X 简单线性回归的更多相关文章
- Python回归分析五部曲(一)—简单线性回归
回归最初是遗传学中的一个名词,是由英国生物学家兼统计学家高尔顿首先提出来的,他在研究人类身高的时候发现:高个子回归人类的平均身高,而矮个子则从另一方向回归人类的平均身高: 回归分析整体逻辑 回归分析( ...
- SPSS数据分析—简单线性回归
和相关分析一样,回归分析也可以描述两个变量间的关系,但二者也有所区别,相关分析可以通过相关系数大小描述变量间的紧密程度,而回归分析更进一步,不仅可以描述变量间的紧密程度,还可以定量的描述当一个变量变化 ...
- day-12 python实现简单线性回归和多元线性回归算法
1.问题引入 在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性组合.一个带有一个自变 ...
- sklearn学习笔记之简单线性回归
简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误 ...
- 机器学习与Tensorflow(1)——机器学习基本概念、tensorflow实现简单线性回归
一.机器学习基本概念 1.训练集和测试集 训练集(training set/data)/训练样例(training examples): 用来进行训练,也就是产生模型或者算法的数据集 测试集(test ...
- 机器学习(2):简单线性回归 | 一元回归 | 损失计算 | MSE
前文再续书接上一回,机器学习的主要目的,是根据特征进行预测.预测到的信息,叫标签. 从特征映射出标签的诸多算法中,有一个简单的算法,叫简单线性回归.本文介绍简单线性回归的概念. (1)什么是简单线性回 ...
- 机器学习——Day 2 简单线性回归
写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https:// ...
- R 语言中的简单线性回归
... sessionInfo() # 查询版本及系统和库等信息 getwd() path <- "E:/RSpace/R_in_Action" setwd(path) rm ...
- 简单线性回归(梯度下降法) python实现
grad_desc .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...
- 简单线性回归(最小二乘法)python实现
简单线性回归(最小二乘法)¶ 0.引入依赖¶ In [7]: import numpy as np import matplotlib.pyplot as plt 1.导入数据¶ In [ ...
随机推荐
- PKUSC2022 润摆寄
Day 0 模拟赛的题目竟是 寄 摆 润!预示着我的 PKUSC. Day 1 猜中主角(指九条可怜)原来都是芳文厨 看错时间以为考 \(5h\),于是告诉自己 优势在我可以慢慢做. T1 很显然的 ...
- Python Kconfiglib初次学习
1 参考 kconfiglib库官方介绍:kconfiglib · PyPI Kconfiglib源码:GitHub - ulfalizer/Kconfiglib: A flexible Python ...
- 聊聊MongoDB中连接池、索引、事务
大家好,我是哪吒. 三分钟你将学会: MongoDB连接池的使用方式与常用参数 查询五步走,能活九十九? MongoDB索引与MySQL索引有何异同? MongoDB事务与ACID 什么是聚合框架? ...
- Grafana 系列文章(九):开源云原生日志解决方案 Loki 简介
简介 Grafana Labs 简介 Grafana 是用于时序数据的事实上的仪表盘解决方案.它支持近百个数据源. Grafana Labs 想从一个仪表盘解决方案转变成一个可观察性 (observa ...
- python导入xls数据到db--优化版
import sys from orator import DatabaseManager import xlrd dbconfig = { 'mysql': { 'driver': 'mysql', ...
- ASP.NET Core - .NET 6 的入口文件
自从.NET 6 开始,微软对应用的入口文件进行了调整,移除了 Main 方法和 Startup 文件,使用顶级语句的写法,将应用初始化的相关配置和操作全部集中在 Program.cs 文件中,如下: ...
- 限流器算法实现(JUC原子类使用实践)
系列文章目录和关于我 一丶限流器存在的意义 在高并发系统中,出于系统保护角度考虑,通常会对流量进行限流. 限流*的目的是在遇到流量高峰期或者流量突增(流量尖刺)时,通过对流量速率进行限制,当达到限制速 ...
- FreeRTOS使用汇总
/**********创建任务**************/ TaskHandle_t Hardware_TaskHandle; //任务句柄,如果不用到消息,可不用句柄 void main (voi ...
- Spring Boot 小知识、小demo、配置文件
五.spring boot 通过springboot可以快速的搭建一个基于ssm框架的Java application,简单配置,自动装配. JavaConfiguration用java类来替代xml ...
- 【TS】基础类型
在ts中定义基础类型, 语法 : let 变量名 : 数据类型 = 值 // 布尔类型 ----boolean let flag : boolean = true flag = false 在赋值的时 ...