代数余子式的由来/代数余子式为什么-1的系数是ⁱ⁺ʲ?/证明一个n阶行列式,如果其中第i行(或第j列)所有元素除aᵢⱼ外都为零,那么这行列式等于aᵢⱼ与它的代数余子式的乘积/证明行列式按行(列)展开法则:n(n>1)阶行列式等于它任意一行(列)的所有元素与它们对应的代数余子式的乘积的和。

前言:重在记录,可能出错。

1. 代数余子式:(-1)ⁱ⁺ʲMᵢⱼ,Mᵢⱼ为余子式。当书本上第一次出现这个定义的时候,有人对这个ⁱ⁺ʲ感到疑惑,实际上,书本后面在证明引理——一个n阶行列式,如果其中第i行所有元素除aᵢⱼ外都为零,那么这行列式等于aᵢⱼ与它的代数余子式的乘积的时候已经给出了思路:

证:此处仅证第i行的情况,第j列情况的证明同理。

D=|a11⋮0⋮an1⋯⋱⋯⋰⋯a1j⋮aij⋮anj⋯⋰⋯⋱⋯a1n⋮0⋮ann|=(-1)i-1+n-1|aij⋯0⋯00⋯0⋮⋮⋮⋮⋮a1j⋯a11⋯a1,j-1a1,j+1⋯a1n⋮⋮⋮⋮⋮ai-1,j⋯ai-1,1⋯ai-1,j-1ai-1,j+1⋯ai-1,nai+1,j⋯ai+1,1⋯ai+1,j-1ai+1,j+1⋯ai+1,n⋮⋮⋮⋮⋮anj⋯an1⋯an,j-1an,j+1⋯ann|   ①=(-1)i+j-2aijMij=aij(-1)i+j-2Mij   任一整数±2(一个偶数)都不影响其奇偶性=aij  (-1)i+jMij  ②

2. 怎么计算①式?

采用分块法:以第一行第一列元素仍为第一行第一列元素,将原行列式分块为二阶行列式D,第一行第二列块值为0,因此,此行列式的值为第一行第一列块值乘以第二行第二列块值。

D=|aij∣0     ⋮   ∣Mij|=aij⸳Mij

3. 可见上述②式中已经出现了一个通项(代数余子式的)的身影,但是,这并不能使我们决定为它定义一个单独的名词。接下来证明行列式按行(列)展开法则:n(n>1)阶行列式等于它任意一行(列)的所有元素与它们对应的代数余子式的乘积的和。

证:此处仅证按行展开的情况,按列展开情况的证明同理。

D=|a11a12⋯a1n⋮⋮⋮ai1ai2⋯ain⋮⋮⋮an1an2⋯ann|=|a11a12⋯a1n⋮⋮⋮ai1+0+⋯+00+ai2+0+⋯+0⋯0+⋯+0+ain⋮⋮⋮an1an2⋯ann|=|a11a12⋯a1n⋮⋮⋮ai10⋯0⋮⋮⋮an1an2⋯ann|+|a11a12⋯a1n⋮⋮⋮0ai2⋯0⋮⋮⋮an1an2⋯ann|+⋯+|a11a12⋯a1n⋮⋮⋮00⋯ain⋮⋮⋮an1an2⋯ann|=(-1)i-1|ai10⋯0a11a12⋯a1n⋮⋮⋮ai-1,1ai-1,2⋯ai-1,nai+1,1ai+1,2⋯ai+1,n⋮⋮⋮an1an2⋯ann|+(-1)i-1+1|ai2000a12a11a13a1nai-1,2ai-1,1ai-1,3ai-1,nai+1,2ai+1,1ai+1,3ai+1,nan2an1an3ann|+⋯+(-1)i-1+n-1|ain0⋯0a1na11⋯a1,n-1⋮⋮⋮ai-1,nai-1,1⋯ai-1,n-1ai+1,nai+1,1⋯ai+1,n-1⋮⋮⋮annan1⋯an,n-1|=(-1)i-1ai1Mi1+(-1)i-1+1ai2Mi2+⋯+(-1)i-1+n-1ainMin     这里的化简已在上面证明=∑j=1naij(-1)i+jMij

此时,最后的结果同样出现一个通项(代数余子式的)身影,并且对于所有行列式有普遍性,因此我们赋予了(-1)ⁱ⁺ʲMᵢⱼ一个专有名称——代数余子式(algebraic complement minor),记作Aᵢⱼ。

代数余子式的由来/代数余子式为什么-1的系数是ⁱ⁺ʲ?/证明一个n阶行列式,如果其中第i行(或第j列)所有元素除aᵢⱼ外都为零,那么这行列式等于aᵢⱼ与它的代数余子式的乘积/证明行列式按行(列)展开法则:n(n>1)阶行列式等于它任意一行(列)的所有元素与它们对应的代数余子式的乘积的和。的更多相关文章

  1. 编程计算2×3阶矩阵A和3×2阶矩阵B之积C。 矩阵相乘的基本方法是: 矩阵A的第i行的所有元素同矩阵B第j列的元素对应相乘, 并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值。 要求: (1)从键盘分别输入矩阵A和B, 输出乘积矩阵C (2) **输入提示信息为: 输入矩阵A之前提示:"Input 2*3 matrix a:\n" 输入矩阵B之前提示

    编程计算2×3阶矩阵A和3×2阶矩阵B之积C. 矩阵相乘的基本方法是: 矩阵A的第i行的所有元素同矩阵B第j列的元素对应相乘, 并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值. 要求: ...

  2. 行列式(二):余子式&代数余子式

    目录 按行列展开 \(\Delta\)以下内容主要为<线性代数>的学习笔记 按行列展开 一般来说,低阶行列式的计算比高阶行列式的计算要简单得多,因此考虑用低阶行列式来表示高阶行列式.为此, ...

  3. Matrix-tree 定理的一些整理

    \(Matrix-tree\) 定理用来解决一类生成树计数问题,以下前置知识内容均是先基于无向无权图来介绍的.有关代数余子式的部分不是很明白,如果有错误还请指出-- 部分内容参考至:\(Blog\_1 ...

  4. Linear Algebra - Determinant(基础)

    1. 行列式的定义 一阶行列式: \[ \begin{vmatrix} a_1 \end{vmatrix} = a_1 \] 二阶行列式: \[ \begin{vmatrix} a_{11} & ...

  5. DirectX11--HLSL语法入门

    前言 编写本内容仅仅是为了完善当前的教程体系,入门级别的内容其实基本上都是千篇一律,仅有一些必要细节上的扩充.要入门HLSL,只是掌握入门语法,即便把HLSL的全部语法也吃透了也并不代表你就能着色器代 ...

  6. 中国科学技术大学第五届信息安全大赛(hackergame2018自我总结)2

    这一批题都是我不会的,只能把官方write-up放在这里了 1.FLXG 的秘密 ----------------------------------------------------------- ...

  7. Hessian矩阵与多元函数极值

    Hessian矩阵与多元函数极值 海塞矩阵(Hessian Matrix),又译作海森矩阵,是一个多元函数的二阶偏导数构成的方阵.虽然它是一个具有悠久历史的数学成果.可是在机器学习和图像处理(比如SI ...

  8. 《剑指offer 第二版》题解

    剑指Offer 按题号排序 面试题 3:数组中重复的数字 面试题 4:二维数组中的查找 面试题 5:替换空格 面试题 6:从头到尾打印链表 面试题 7:重建二叉树 面试题 8:二叉树的下一个节点 面试 ...

  9. 题解 P2382 【化学分子式】

    题目 不懂为什么,本蒟蒻用在线算法打就一直炸...... 直到用了"半离线"算法...... 一遍就过了好吗...... 某位机房的小伙伴一遍就过了 另一位机房的小伙伴也是每次都爆 ...

  10. 基于python的RSA解密算法

    摘要 网上有很多关于RSA的解密脚本,欧拉函数.欧几里得函数什么的,对于一个大专生的我来说,一窍不通,至此经历了三天三夜,我翻阅了RSA的加密原理,以及其底层算法,专研出了一套我自己的解密算法,尚有不 ...

随机推荐

  1. 数据库MySQL(完结)

    SQL注入问题 简介 针对SQL注入的攻击行为可描述为通过用户可控参数中注入SQL语法,破坏原有SQL结构,达到编写程序意料之外结果的攻击行为. 其成因可归结为以下两个原理叠加造成: 程序编写者在处理 ...

  2. 学习.NET MAUI Blazor(一)、Blazor是个啥?

    先把Blazor放一边,先来看看目前Web开发的技术栈. 注:上图只是为了说明问题,没有任何语言歧视! 这是目前最常用的前后端分离开发模式,这个开发模式需要配备前端工程师和后端工程师.当然了,全栈工程 ...

  3. Apache Kafka 移除 ZK Proposals

    Zookeeper 和 KRaft 这里有一篇 Kafka 功能改进的 proposal 原文.要了解移除 ZK 的原因,可以仔细看看该文章.以下是对该文章的翻译. 动机 目前,Kafka 使用 Zo ...

  4. Java安全之JDBC Attacks学习记录

    Java安全之JDBC Attacks 写在前面 很早就看到了Make JDBC Attacks Brilliant Again议题,一直想分析学习下,但是太懒. MySQL 原理概述 "扩 ...

  5. Linux 驱动像单片机一样读取一帧dmx512串口数据

    硬件全志R528 目标:实现Linux 读取一帧dmx512串口数据. 问题分析:因为串口数据量太大,帧与帧之间的间隔太小.通过Linux自带的读取函数方法无法获取到 帧头和帧尾,读取到的数据都是缓存 ...

  6. 精华推荐 | 【JVM深层系列】「GC底层调优系列」一文带你彻底加强夯实底层原理之GC垃圾回收技术的分析指南(GC原理透析)

    前提介绍 很多小伙伴,都跟我反馈,说自己总是对JVM这一块的学习和认识不够扎实也不够成熟,因为JVM的一些特性以及运作机制总是混淆以及不确定,导致面试和工作实战中出现了很多的纰漏和短板,解决广大小伙伴 ...

  7. Java基础1-1-3—java基础语法(条件控制语句)

    3. 条件控制语句 3.1 流程控制语句-顺序结构 流程控制语句:通过一些语句,来控制程序的[执行流程] 流程控制语句分类: 顺序结构 分支结构(if,switch) 循环结构(for,while,d ...

  8. 关于C#中async/await的用法

    一直对c#中async/await的用法模模糊糊,不太清晰,今天写了一下Demo彻底明确一下async/await的用法,以免因为对其不了解而对后期的业务产生影响(比如事务导致的锁表等等). 1. 首 ...

  9. Python函数式编程之map/filter/reduce/sorted

    Python函数式编程之map/filter/reduce/sorted 关于函数式编程 函数式编程Functional Programming,其思想更接近数学计算 函数式编程就是一种抽象程度很高的 ...

  10. .NET List集合对比差异,Get,Post请求

    1.键值排序 Dictionary<int, List<string>> dic = new Dictionary<int, List<string>> ...