代数余子式的由来/代数余子式为什么-1的系数是ⁱ⁺ʲ?/证明一个n阶行列式,如果其中第i行(或第j列)所有元素除aᵢⱼ外都为零,那么这行列式等于aᵢⱼ与它的代数余子式的乘积/证明行列式按行(列)展开法则:n(n>1)阶行列式等于它任意一行(列)的所有元素与它们对应的代数余子式的乘积的和。
代数余子式的由来/代数余子式为什么-1的系数是ⁱ⁺ʲ?/证明一个n阶行列式,如果其中第i行(或第j列)所有元素除aᵢⱼ外都为零,那么这行列式等于aᵢⱼ与它的代数余子式的乘积/证明行列式按行(列)展开法则:n(n>1)阶行列式等于它任意一行(列)的所有元素与它们对应的代数余子式的乘积的和。
前言:重在记录,可能出错。
1. 代数余子式:(-1)ⁱ⁺ʲMᵢⱼ,Mᵢⱼ为余子式。当书本上第一次出现这个定义的时候,有人对这个ⁱ⁺ʲ感到疑惑,实际上,书本后面在证明引理——一个n阶行列式,如果其中第i行所有元素除aᵢⱼ外都为零,那么这行列式等于aᵢⱼ与它的代数余子式的乘积的时候已经给出了思路:
证:此处仅证第i行的情况,第j列情况的证明同理。
D=|a11⋮0⋮an1⋯⋱⋯⋰⋯a1j⋮aij⋮anj⋯⋰⋯⋱⋯a1n⋮0⋮ann|=(-1)i-1+n-1|aij⋯0⋯00⋯0⋮⋮⋮⋮⋮a1j⋯a11⋯a1,j-1a1,j+1⋯a1n⋮⋮⋮⋮⋮ai-1,j⋯ai-1,1⋯ai-1,j-1ai-1,j+1⋯ai-1,nai+1,j⋯ai+1,1⋯ai+1,j-1ai+1,j+1⋯ai+1,n⋮⋮⋮⋮⋮anj⋯an1⋯an,j-1an,j+1⋯ann| ①=(-1)i+j-2aijMij=aij(-1)i+j-2Mij 任一整数±2(一个偶数)都不影响其奇偶性=aij (-1)i+jMij ②
2. 怎么计算①式?
采用分块法:以第一行第一列元素仍为第一行第一列元素,将原行列式分块为二阶行列式D,第一行第二列块值为0,因此,此行列式的值为第一行第一列块值乘以第二行第二列块值。
D=|aij∣0 ⋮ ∣Mij|=aij⸳Mij
3. 可见上述②式中已经出现了一个通项(代数余子式的)的身影,但是,这并不能使我们决定为它定义一个单独的名词。接下来证明行列式按行(列)展开法则:n(n>1)阶行列式等于它任意一行(列)的所有元素与它们对应的代数余子式的乘积的和。
证:此处仅证按行展开的情况,按列展开情况的证明同理。
D=|a11a12⋯a1n⋮⋮⋮ai1ai2⋯ain⋮⋮⋮an1an2⋯ann|=|a11a12⋯a1n⋮⋮⋮ai1+0+⋯+00+ai2+0+⋯+0⋯0+⋯+0+ain⋮⋮⋮an1an2⋯ann|=|a11a12⋯a1n⋮⋮⋮ai10⋯0⋮⋮⋮an1an2⋯ann|+|a11a12⋯a1n⋮⋮⋮0ai2⋯0⋮⋮⋮an1an2⋯ann|+⋯+|a11a12⋯a1n⋮⋮⋮00⋯ain⋮⋮⋮an1an2⋯ann|=(-1)i-1|ai10⋯0a11a12⋯a1n⋮⋮⋮ai-1,1ai-1,2⋯ai-1,nai+1,1ai+1,2⋯ai+1,n⋮⋮⋮an1an2⋯ann|+(-1)i-1+1|ai2000a12a11a13a1nai-1,2ai-1,1ai-1,3ai-1,nai+1,2ai+1,1ai+1,3ai+1,nan2an1an3ann|+⋯+(-1)i-1+n-1|ain0⋯0a1na11⋯a1,n-1⋮⋮⋮ai-1,nai-1,1⋯ai-1,n-1ai+1,nai+1,1⋯ai+1,n-1⋮⋮⋮annan1⋯an,n-1|=(-1)i-1ai1Mi1+(-1)i-1+1ai2Mi2+⋯+(-1)i-1+n-1ainMin 这里的化简已在上面证明=∑j=1naij(-1)i+jMij
此时,最后的结果同样出现一个通项(代数余子式的)身影,并且对于所有行列式有普遍性,因此我们赋予了(-1)ⁱ⁺ʲMᵢⱼ一个专有名称——代数余子式(algebraic complement minor),记作Aᵢⱼ。
代数余子式的由来/代数余子式为什么-1的系数是ⁱ⁺ʲ?/证明一个n阶行列式,如果其中第i行(或第j列)所有元素除aᵢⱼ外都为零,那么这行列式等于aᵢⱼ与它的代数余子式的乘积/证明行列式按行(列)展开法则:n(n>1)阶行列式等于它任意一行(列)的所有元素与它们对应的代数余子式的乘积的和。的更多相关文章
- 编程计算2×3阶矩阵A和3×2阶矩阵B之积C。 矩阵相乘的基本方法是: 矩阵A的第i行的所有元素同矩阵B第j列的元素对应相乘, 并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值。 要求: (1)从键盘分别输入矩阵A和B, 输出乘积矩阵C (2) **输入提示信息为: 输入矩阵A之前提示:"Input 2*3 matrix a:\n" 输入矩阵B之前提示
编程计算2×3阶矩阵A和3×2阶矩阵B之积C. 矩阵相乘的基本方法是: 矩阵A的第i行的所有元素同矩阵B第j列的元素对应相乘, 并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值. 要求: ...
- 行列式(二):余子式&代数余子式
目录 按行列展开 \(\Delta\)以下内容主要为<线性代数>的学习笔记 按行列展开 一般来说,低阶行列式的计算比高阶行列式的计算要简单得多,因此考虑用低阶行列式来表示高阶行列式.为此, ...
- Matrix-tree 定理的一些整理
\(Matrix-tree\) 定理用来解决一类生成树计数问题,以下前置知识内容均是先基于无向无权图来介绍的.有关代数余子式的部分不是很明白,如果有错误还请指出-- 部分内容参考至:\(Blog\_1 ...
- Linear Algebra - Determinant(基础)
1. 行列式的定义 一阶行列式: \[ \begin{vmatrix} a_1 \end{vmatrix} = a_1 \] 二阶行列式: \[ \begin{vmatrix} a_{11} & ...
- DirectX11--HLSL语法入门
前言 编写本内容仅仅是为了完善当前的教程体系,入门级别的内容其实基本上都是千篇一律,仅有一些必要细节上的扩充.要入门HLSL,只是掌握入门语法,即便把HLSL的全部语法也吃透了也并不代表你就能着色器代 ...
- 中国科学技术大学第五届信息安全大赛(hackergame2018自我总结)2
这一批题都是我不会的,只能把官方write-up放在这里了 1.FLXG 的秘密 ----------------------------------------------------------- ...
- Hessian矩阵与多元函数极值
Hessian矩阵与多元函数极值 海塞矩阵(Hessian Matrix),又译作海森矩阵,是一个多元函数的二阶偏导数构成的方阵.虽然它是一个具有悠久历史的数学成果.可是在机器学习和图像处理(比如SI ...
- 《剑指offer 第二版》题解
剑指Offer 按题号排序 面试题 3:数组中重复的数字 面试题 4:二维数组中的查找 面试题 5:替换空格 面试题 6:从头到尾打印链表 面试题 7:重建二叉树 面试题 8:二叉树的下一个节点 面试 ...
- 题解 P2382 【化学分子式】
题目 不懂为什么,本蒟蒻用在线算法打就一直炸...... 直到用了"半离线"算法...... 一遍就过了好吗...... 某位机房的小伙伴一遍就过了 另一位机房的小伙伴也是每次都爆 ...
- 基于python的RSA解密算法
摘要 网上有很多关于RSA的解密脚本,欧拉函数.欧几里得函数什么的,对于一个大专生的我来说,一窍不通,至此经历了三天三夜,我翻阅了RSA的加密原理,以及其底层算法,专研出了一套我自己的解密算法,尚有不 ...
随机推荐
- 数据库MySQL(完结)
SQL注入问题 简介 针对SQL注入的攻击行为可描述为通过用户可控参数中注入SQL语法,破坏原有SQL结构,达到编写程序意料之外结果的攻击行为. 其成因可归结为以下两个原理叠加造成: 程序编写者在处理 ...
- 学习.NET MAUI Blazor(一)、Blazor是个啥?
先把Blazor放一边,先来看看目前Web开发的技术栈. 注:上图只是为了说明问题,没有任何语言歧视! 这是目前最常用的前后端分离开发模式,这个开发模式需要配备前端工程师和后端工程师.当然了,全栈工程 ...
- Apache Kafka 移除 ZK Proposals
Zookeeper 和 KRaft 这里有一篇 Kafka 功能改进的 proposal 原文.要了解移除 ZK 的原因,可以仔细看看该文章.以下是对该文章的翻译. 动机 目前,Kafka 使用 Zo ...
- Java安全之JDBC Attacks学习记录
Java安全之JDBC Attacks 写在前面 很早就看到了Make JDBC Attacks Brilliant Again议题,一直想分析学习下,但是太懒. MySQL 原理概述 "扩 ...
- Linux 驱动像单片机一样读取一帧dmx512串口数据
硬件全志R528 目标:实现Linux 读取一帧dmx512串口数据. 问题分析:因为串口数据量太大,帧与帧之间的间隔太小.通过Linux自带的读取函数方法无法获取到 帧头和帧尾,读取到的数据都是缓存 ...
- 精华推荐 | 【JVM深层系列】「GC底层调优系列」一文带你彻底加强夯实底层原理之GC垃圾回收技术的分析指南(GC原理透析)
前提介绍 很多小伙伴,都跟我反馈,说自己总是对JVM这一块的学习和认识不够扎实也不够成熟,因为JVM的一些特性以及运作机制总是混淆以及不确定,导致面试和工作实战中出现了很多的纰漏和短板,解决广大小伙伴 ...
- Java基础1-1-3—java基础语法(条件控制语句)
3. 条件控制语句 3.1 流程控制语句-顺序结构 流程控制语句:通过一些语句,来控制程序的[执行流程] 流程控制语句分类: 顺序结构 分支结构(if,switch) 循环结构(for,while,d ...
- 关于C#中async/await的用法
一直对c#中async/await的用法模模糊糊,不太清晰,今天写了一下Demo彻底明确一下async/await的用法,以免因为对其不了解而对后期的业务产生影响(比如事务导致的锁表等等). 1. 首 ...
- Python函数式编程之map/filter/reduce/sorted
Python函数式编程之map/filter/reduce/sorted 关于函数式编程 函数式编程Functional Programming,其思想更接近数学计算 函数式编程就是一种抽象程度很高的 ...
- .NET List集合对比差异,Get,Post请求
1.键值排序 Dictionary<int, List<string>> dic = new Dictionary<int, List<string>> ...