一、概述

Plan Hint是PG社区官方版”永远”不考虑引入的功能之一,社区开发者的理念是,引入Hint功能,会掩盖优化器本身的问题,导致缺陷不被暴露出来。但对于使用者来讲,遇到某些SQL的查询计划不好,性能出了问题,其他方法又不奏效的情况下,首先的目标还是想尽快解决问题,而Hint就可以在这种时候帮助到我们。

二、配置

在postgresql.conf中修改shared_preload_libraries=‘pg_hint_plan'

三、示例

1、初始化测试数据

create table t1 (id int, t int, name varchar(255));

create table t2 (id int , salary int);
create table t3 (id int , age int);
insert into t1 values (1,200,'jack');
insert into t1 values (2,300,'tom');
insert into t1 values (3,400,'john');
insert into t2 values (1,40000);
insert into t2 values (2,38000);
insert into t2 values (3,18000);
insert into t3 values (3,38);
insert into t3 values (2,55);
insert into t3 values (1,12);
explain analyze select * from t1 left join t2 on t1.id=t2.id left join t3 on t1.id=t3.id;
              QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------
 Hash Right Join (cost=89.82..337.92 rows=17877 width=540) (actual time=0.053..0.059 rows=3 loops=1)
 Hash Cond: (t3.id = t1.id)
 -> Seq Scan on t3 (cost=0.00..32.60 rows=2260 width=8) (actual time=0.002..0.002 rows=3 loops=1)
 -> Hash (cost=70.05..70.05 rows=1582 width=532) (actual time=0.042..0.043 rows=3 loops=1)
   Buckets: 2048 Batches: 1 Memory Usage: 17kB
   -> Hash Right Join (cost=13.15..70.05 rows=1582 width=532) (actual time=0.034..0.039 rows=3 loops=1)
    Hash Cond: (t2.id = t1.id)
    -> Seq Scan on t2 (cost=0.00..32.60 rows=2260 width=8) (actual time=0.002..0.002 rows=3 loops=1)
    -> Hash (cost=11.40..11.40 rows=140 width=524) (actual time=0.017..0.017 rows=3 loops=1)
      Buckets: 1024 Batches: 1 Memory Usage: 9kB
      -> Seq Scan on t1 (cost=0.00..11.40 rows=140 width=524) (actual time=0.010..0.011 rows=3 loops=1)
 Planning time: 0.154 ms
 Execution time: 0.133 ms
 
create index idx_t1_id on t1(id);

create index idx_t2_id on t2(id);
create index idx_t3_id on t3(id);
explain analyze select * from t1 left join t2 on t1.id=t2.id left join t3 on t1.id=t3.id;
             QUERY PLAN
--------------------------------------------------------------------------------------------------------------
 Hash Left Join (cost=2.14..3.25 rows=3 width=540) (actual time=0.045..0.047 rows=3 loops=1)
 Hash Cond: (t1.id = t3.id)
 -> Hash Left Join (cost=1.07..2.14 rows=3 width=532) (actual time=0.030..0.032 rows=3 loops=1)
   Hash Cond: (t1.id = t2.id)
   -> Seq Scan on t1 (cost=0.00..1.03 rows=3 width=524) (actual time=0.005..0.006 rows=3 loops=1)
   -> Hash (cost=1.03..1.03 rows=3 width=8) (actual time=0.007..0.007 rows=3 loops=1)
    Buckets: 1024 Batches: 1 Memory Usage: 9kB
    -> Seq Scan on t2 (cost=0.00..1.03 rows=3 width=8) (actual time=0.002..0.003 rows=3 loops=1)
 -> Hash (cost=1.03..1.03 rows=3 width=8) (actual time=0.005..0.005 rows=3 loops=1)
   Buckets: 1024 Batches: 1 Memory Usage: 9kB
   -> Seq Scan on t3 (cost=0.00..1.03 rows=3 width=8) (actual time=0.002..0.002 rows=3 loops=1)
 Planning time: 0.305 ms
 Execution time: 0.128 ms

2、强制走Index Scan

explain (analyze,buffers) /*+ indexscan(t1) */select * from t1 where id=2;

             QUERY PLAN
----------------------------------------------------------------------------------------------------------------
 Index Scan using idx_t1_id on t1 (cost=0.13..8.15 rows=1 width=524) (actual time=0.044..0.046 rows=1 loops=1)
 Index Cond: (id = 2)
 Buffers: shared hit=1 read=1
 Planning time: 0.145 ms
 Execution time: 0.072 ms
 
explain (analyze,buffers) /*+ indexscan(t1 idx_t1_id) */select * from t1 where id=2;
             QUERY PLAN
----------------------------------------------------------------------------------------------------------------
 Index Scan using idx_t1_id on t1 (cost=0.13..8.15 rows=1 width=524) (actual time=0.016..0.017 rows=1 loops=1)
 Index Cond: (id = 2)
 Buffers: shared hit=2
 Planning time: 0.079 ms
 Execution time: 0.035 ms

3、强制多条件组合

/*+ indexscan(t2) indexscan(t1 idx_t1_id) */

/*+ seqscan(t2) indexscan(t1 idx_t1_id) */
explain analyze SELECT * FROM t1 JOIN t2 ON (t1.id = t2.id);
            QUERY PLAN
--------------------------------------------------------------------------------------------------------
 Hash Join (cost=1.07..2.14 rows=3 width=532) (actual time=0.018..0.020 rows=3 loops=1)
 Hash Cond: (t1.id = t2.id)
 -> Seq Scan on t1 (cost=0.00..1.03 rows=3 width=524) (actual time=0.006..0.007 rows=3 loops=1)
 -> Hash (cost=1.03..1.03 rows=3 width=8) (actual time=0.005..0.005 rows=3 loops=1)
   Buckets: 1024 Batches: 1 Memory Usage: 9kB
   -> Seq Scan on t2 (cost=0.00..1.03 rows=3 width=8) (actual time=0.001..0.003 rows=3 loops=1)
 Planning time: 0.114 ms
 Execution time: 0.055 ms
(8 rows)
 
/*+ indexscan(t2) indexscan(t1 idx_t1_id) */explain analyze SELECT * FROM t1 JOIN t2 ON (t1.id = t2.id);

              QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------
 Merge Join (cost=0.26..24.40 rows=3 width=532) (actual time=0.047..0.053 rows=3 loops=1)
 Merge Cond: (t1.id = t2.id)
 -> Index Scan using idx_t1_id on t1 (cost=0.13..12.18 rows=3 width=524) (actual time=0.014..0.015 rows=3 loops=1)
 -> Index Scan using idx_t2_id on t2 (cost=0.13..12.18 rows=3 width=8) (actual time=0.026..0.028 rows=3 loops=1)
 
/*+ seqscan(t2) indexscan(t1 idx_t1_id) */explain analyze SELECT * FROM t1 JOIN t2 ON (t1.id = t2.id);

              QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------
 Nested Loop (cost=0.13..13.35 rows=3 width=532) (actual time=0.025..0.032 rows=3 loops=1)
 Join Filter: (t1.id = t2.id)
 Rows Removed by Join Filter: 6
 -> Index Scan using idx_t1_id on t1 (cost=0.13..12.18 rows=3 width=524) (actual time=0.016..0.018 rows=3 loops=1)
 -> Materialize (cost=0.00..1.04 rows=3 width=8) (actual time=0.002..0.003 rows=3 loops=3)
   -> Seq Scan on t2 (cost=0.00..1.03 rows=3 width=8) (actual time=0.004..0.005 rows=3 loops=1)
 

4、强制指定join method

/*+ NestLoop(t1 t2) MergeJoin(t1 t2 t3) Leading(t1 t2 t3) */

explain analyze select * from t1 left join t2 on t1.id=t2.id left join t3 on t1.id=t3.id;
              QUERY PLAN
--------------------------------------------------------------------------------------------------------------------
 Merge Left Join (cost=3.28..3.34 rows=3 width=540) (actual time=0.093..0.096 rows=3 loops=1)
 Merge Cond: (t1.id = t3.id)
 -> Sort (cost=2.23..2.23 rows=3 width=532) (actual time=0.077..0.078 rows=3 loops=1)
   Sort Key: t1.id
   Sort Method: quicksort Memory: 25kB
   -> Nested Loop Left Join (cost=0.00..2.20 rows=3 width=532) (actual time=0.015..0.020 rows=3 loops=1)
    Join Filter: (t1.id = t2.id)
    Rows Removed by Join Filter: 6
    -> Seq Scan on t1 (cost=0.00..1.03 rows=3 width=524) (actual time=0.005..0.005 rows=3 loops=1)
    -> Materialize (cost=0.00..1.04 rows=3 width=8) (actual time=0.002..0.003 rows=3 loops=3)
      -> Seq Scan on t2 (cost=0.00..1.03 rows=3 width=8) (actual time=0.002..0.003 rows=3 loops=1)
 -> Sort (cost=1.05..1.06 rows=3 width=8) (actual time=0.012..0.013 rows=3 loops=1)
   Sort Key: t3.id
   Sort Method: quicksort Memory: 25kB
   -> Seq Scan on t3 (cost=0.00..1.03 rows=3 width=8) (actual time=0.002..0.003 rows=3 loops=1)
 
/*+ NestLoop(t1 t2 t3) MergeJoin(t2 t3) Leading(t1 (t2 t3)) */

explain analyze select * from t1 left join t2 on t1.id=t2.id left join t3 on t1.id=t3.id;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------
 Nested Loop Left Join (cost=1.07..3.31 rows=3 width=540) (actual time=0.036..0.041 rows=3 loops=1)
 Join Filter: (t1.id = t3.id)
 Rows Removed by Join Filter: 6
 -> Hash Left Join (cost=1.07..2.14 rows=3 width=532) (actual time=0.030..0.032 rows=3 loops=1)
   Hash Cond: (t1.id = t2.id)
   -> Seq Scan on t1 (cost=0.00..1.03 rows=3 width=524) (actual time=0.008..0.009 rows=3 loops=1)
   -> Hash (cost=1.03..1.03 rows=3 width=8) (actual time=0.007..0.007 rows=3 loops=1)
    Buckets: 1024 Batches: 1 Memory Usage: 9kB
    -> Seq Scan on t2 (cost=0.00..1.03 rows=3 width=8) (actual time=0.002..0.004 rows=3 loops=1)
 -> Materialize (cost=0.00..1.04 rows=3 width=8) (actual time=0.001..0.002 rows=3 loops=3)
   -> Seq Scan on t3 (cost=0.00..1.03 rows=3 width=8) (actual time=0.002..0.003 rows=3 loops=1)

5、控制单条SQL的cost

/*+ set(seq_page_cost 20.0) seqscan(t1) */

/*+ set(seq_page_cost 20.0) seqscan(t1) */explain analyze select * from t1 where id > 1;
           QUERY PLAN
-----------------------------------------------------------------------------------------------
 Seq Scan on t1 (cost=0.00..20.04 rows=1 width=524) (actual time=0.011..0.013 rows=2 loops=1)
 Filter: (id > 1)
 Rows Removed by Filter: 1

Postgresql 定制执行计划pg_hint_plan的更多相关文章

  1. PostgreSQL EXPLAIN执行计划学习--多表连接几种Join方式比较

    转了一部分.稍后再修改. 三种多表Join的算法: 一. NESTED LOOP: 对于被连接的数据子集较小的情况,嵌套循环连接是个较好的选择.在嵌套循环中,内表被外表驱动,外表返回的每一行都要在内表 ...

  2. postgresql中执行计划

    1.Explain explain select * from tablename; 2.explain输出josn格式 explain (format json) select * from tab ...

  3. PostgreSQL 修改执行计划 GroupAggregate 为 HashAggregate

    1.前言 PostgreSQL 聚合算法有两种,HashAggregate and GroupAggregate .我们知道GroupAggregate 需要对记录进行排序,而 HashAggrega ...

  4. PostgreSQL 执行计划

    简介 PostgreSQL是“世界上最先进的开源关系型数据库”.因为出现较晚,所以客户人群基数较MySQL少,但是发展势头很猛,最大优势是完全开源. MySQL是“世界上最流行的开源关系型数据库”.当 ...

  5. PostgreSQL执行计划:Bitmap scan VS index only scan

    之前了解过postgresql的Bitmap scan,只是粗略地了解到是通过标记数据页面来实现数据检索的,执行计划中的的Bitmap scan一些细节并不十分清楚.这里借助一个执行计划来分析bitm ...

  6. PostgreSQL 与 Oracle 访问分区表执行计划差异

    熟悉Oracle 的DBA都知道,Oracle 访问分区表时,对于没有提供分区条件的,也就是在无法使用分区剪枝情况下,优化器会根据全局的统计信息制定执行计划,该执行计划针对所有分区适用.在分析利弊之前 ...

  7. postgreSQL执行计划

    " class="wiz-editor-body wiz-readonly" contenteditable="false"> explain命 ...

  8. PostgreSQL执行计划的解析

    一个顺序磁盘页面操作的cost值由系统参数seq_page_cost (floating point)参数指定的,由于这个参数默认为1.0,所以我们可以认为一次顺序磁盘页面操作的cost值为1.下面o ...

  9. MySQL— 索引,视图,触发器,函数,存储过程,执行计划,慢日志,分页性能

    一.索引,分页性能,执行计划,慢日志 (1)索引的种类,创建语句,名词补充(最左前缀匹配,覆盖索引,索引合并,局部索引等): import sys # http://www.cnblogs.com/w ...

  10. MySQL统计信息以及执行计划预估方式初探

    数据库中的统计信息在不同(精确)程度上描述了表中数据的分布情况,执行计划通过统计信息获取符合查询条件的数据大小(行数),来指导执行计划的生成.在以Oracle和SQLServer为代表的商业数据库,和 ...

随机推荐

  1. 如何使用Abstract类?抽象类的威力

    简介: 今天我想谈谈如何使用抽象类,以及抽象类真正的威力.本文将结合具体业务来说明如何使用抽象类. 业务简述: 本人目前只接触过PMS(物业管理系统),公司主要业务的是美国的租房业务.由于美国租房和中 ...

  2. JVM常用调优参数

    目录 JVM内存模型及常用参数 参数解释 垃圾收集器 Serial收集器(-XX:+UseSerialGC -XX:+UseSerialOldGC) Parallel Scavenge收集器(-XX: ...

  3. Linux下“减速”查看日志的方法

    Linux下"减速"查看日志的方法 需求场景 今天查看日志,有个需求,需要按照指定"速率"输出日志信息到终端屏幕上,方便查看. 这个需求日常应该也经常会碰到,比 ...

  4. CH579-Lwip-2.12移植

    代码可以参考以下链接:https://gitee.com/maji19971221/lwip-routine Lwip可以在以下链接下载:http://download.savannah.gnu.or ...

  5. ssm——springMVC整理

    目录 1.概念 1.1.什么是SpringMVC 1.2.B/S架构 1.3.MVC结构 1.4.Spring MVC常用名词 1.5.常用注解 1.6.rest和restfull 1.7.Reque ...

  6. [深度学习] CCPD车牌数据集介绍

    CCPD是一个大型的.多样化的.经过仔细标注的中国城市车牌开源数据集.CCPD数据集主要分为CCPD2019数据集和CCPD2020(CCPD-Green)数据集.CCPD2019数据集车牌类型仅有普 ...

  7. [编程基础] C++多线程入门2-连接和分离线程

    原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 文章目录 2 连接和 ...

  8. 一文详解RocketMQ的存储模型

    摘要:RocketMQ 优异的性能表现,必然绕不开其优秀的存储模型. 本文分享自华为云社区<终于弄明白了 RocketMQ 的存储模型>,作者:勇哥java实战分享. RocketMQ 优 ...

  9. 低版本客户端连接高版本数据库报错ORA-28040、ORA-01017

    测试环境: 客户端:Oracle 11.2.0.1 服务端:Oracle 19.16 测试过程: 1.低版本客户端连接高版本数据库报错ORA-28040 2.低版本客户端连接高版本数据库报错ORA-0 ...

  10. VUE Angular通用动态列表组件-亦可为自动轮播组件-02-根据数据量自动横向滚动,鼠标划入停止滚动

    本文为横向轮播,纵向轮播/动态列表组件请戳---- 代码是angular的,稍微改改就可以放入Vue项目里,差别不大哟 以下代码可以根据实际情况自行调整 父组件html <app-scroll- ...