1. 概述

本文基于Python语言,描述OpenGL的变换

前置知识可参考:

笔者这里不过多描述每个名词、函数和细节,更详细的文档可以参考:

2. 导入GLM

平移、旋转、缩放等变换主要是使用变换矩阵来实现

OpenGL Mathematics(GLM)是一个基于GLSL的只有头文件的C++数学运算库

GLM的GitHub站点为:g-truc/glm: OpenGL Mathematics (GLM) (github.com)

PyGLM是GLM的Python绑定,其API基本一致

PyGLM的GitHub站点为:Zuzu-Typ/PyGLM: Fast OpenGL Mathematics (GLM) for Python (github.com)

PyGLM的PyPi地址为:PyGLM · PyPI

使用pip安装PyGLM:

pip install PyGLM

引入GLM:

import glm

3. 设置变换矩阵

设置一个平移、旋转、缩放的矩阵:

trans = glm.mat4(1.0)
trans = glm.translate(trans, glm.vec3(0.5, -0.5, 0.0)*np.sin(glfw.get_time()))
trans = glm.rotate(trans, glfw.get_time(), glm.vec3(0.0, 0.0, 1.0))
trans = glm.scale(trans, glm.vec3(1.0, 1.0, 0.0)*(np.sin(glfw.get_time())*0.5+0.5))

在顶点着色器中将变换矩阵与坐标结合:

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aTexCoord; out vec3 ourColor;
out vec2 TexCoord; uniform mat4 transform; void main()
{
gl_Position = transform * vec4(aPos, 1.0);
ourColor = aColor;
TexCoord = aTexCoord;
}

将变换矩阵输入到GPU:

glUniformMatrix4fv(glGetUniformLocation(shader.shaderProgram, 'transform'), 1, GL_FALSE, glm.value_ptr(trans))

如果顺利的话,结果如下:

4. 完整代码

主要文件test.py

import glfw as glfw
from OpenGL.GL import *
import numpy as np
from PIL.Image import open
import glm as glm import shader as shader glfw.init()
window = glfw.create_window(800, 600, "transformation", None, None)
glfw.make_context_current(window) VAO = glGenVertexArrays(1)
glBindVertexArray(VAO) vertices = np.array([
# ---- 位置 ---- ---- 颜色 ---- - 纹理坐标 -
0.5, 0.5, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, # 右上
0.5, -0.5, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, # 右下
-0.5, -0.5, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, # 左下
-0.5, 0.5, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, # 左上
])
VBO = glGenBuffers(1)
glBindBuffer(GL_ARRAY_BUFFER, VBO)
glBufferData(GL_ARRAY_BUFFER, 8 * vertices.size, vertices, GL_STATIC_DRAW)
glVertexAttribPointer(0, 3, GL_DOUBLE, GL_FALSE, int(8 * 8), None)
glEnableVertexArrayAttrib(VAO, 0)
glVertexAttribPointer(1, 3, GL_DOUBLE, GL_FALSE, int(8 * 8), ctypes.c_void_p(8 * 3))
glEnableVertexArrayAttrib(VAO, 1)
glVertexAttribPointer(2, 2, GL_DOUBLE, GL_FALSE, int(8 * 8), ctypes.c_void_p(8 * 6))
glEnableVertexAttribArray(2) indices = np.array([
0, 1, 3, # first triangle
1, 2, 3 # second triangle
])
EBO = glGenBuffers(1)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO)
glBufferData(GL_ELEMENT_ARRAY_BUFFER, 8 * indices.size, indices, GL_STATIC_DRAW) image = open('./textures/container.jpg')
texture = glGenTextures(1)
glBindTexture(GL_TEXTURE_2D, texture)
# 为当前绑定的纹理对象设置环绕、过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, image.size[0], image.size[1], 0, GL_RGB, GL_UNSIGNED_BYTE, image.tobytes())
glGenerateMipmap(GL_TEXTURE_2D) shader = shader.Shader("./glsl/test.vs.glsl", "./glsl/test.fs.glsl") while not glfw.window_should_close(window):
glClearColor(0.2, 0.3, 0.3, 1.0)
glClear(GL_COLOR_BUFFER_BIT) trans = glm.mat4(1.0)
trans = glm.translate(trans, glm.vec3(0.5, -0.5, 0.0)*np.sin(glfw.get_time()))
trans = glm.rotate(trans, glfw.get_time(), glm.vec3(0.0, 0.0, 1.0))
trans = glm.scale(trans, glm.vec3(1.0, 1.0, 0.0)*(np.sin(glfw.get_time())*0.5+0.5)) shader.use()
glUniformMatrix4fv(glGetUniformLocation(shader.shaderProgram, 'transform'), 1, GL_FALSE, glm.value_ptr(trans)) glBindVertexArray(VAO)
glActiveTexture(GL_TEXTURE0) # 在绑定纹理之前先激活纹理单元
glBindTexture(GL_TEXTURE_2D, texture)
# glDrawArrays(GL_TRIANGLES, 0, 3)
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, None) glfw.swap_buffers(window)
glfw.poll_events() shader.delete()

顶点着色器test.vs.glsl

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aTexCoord; out vec3 ourColor;
out vec2 TexCoord; uniform mat4 transform; void main()
{
gl_Position = transform * vec4(aPos, 1.0);
ourColor = aColor;
TexCoord = aTexCoord;
}

片段着色器test.fs.glsl

#version 330 core
out vec4 FragColor; in vec3 ourColor;
in vec2 TexCoord; uniform sampler2D texture1;
uniform sampler2D texture2; void main()
{
FragColor = mix(texture(texture1, TexCoord), texture(texture2, TexCoord), 0.2);
}

5. 参考资料

[1]变换 - LearnOpenGL CN (learnopengl-cn.github.io)

[2]glm/manual.md at master · g-truc/glm (github.com)

[3]OpenGL学习笔记三——引入GLM库,实现transform_绿洲守望者的博客-CSDN博客_glm库

[4]OpenGL学习笔记(五)纹理 - 知乎 (zhihu.com)

[5]PyGLM · PyPI

[6]LearnOpenGL-Python/transformations.py at master · Zuzu-Typ/LearnOpenGL-Python (github.com)

基于Python的OpenGL 04 之变换的更多相关文章

  1. 基于python的快速傅里叶变换FFT(二)

    基于python的快速傅里叶变换FFT(二)本文在上一篇博客的基础上进一步探究正弦函数及其FFT变换. 知识点  FFT变换,其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法. ...

  2. 从Theano到Lasagne:基于Python的深度学习的框架和库

    从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Incept ...

  3. OpenGL 的空间变换(上):矩阵在空间几何中的应用

    在使用 OpenGL 的应用程序中,当我们指定了模型的顶点后,顶点依次会变换到不同的 OpenGL 空间中,最后才会被显示到屏幕上.在变换的过程中,通过使用矩阵,我们更高效地来完成这些变换工作. 本篇 ...

  4. OpenGL 的空间变换(下):空间变换

    通过本文的上篇 OpenGL 的空间变换(上):矩阵在空间几何中的应用 ,我们了解到矩阵的基础概念.并且掌握了矩阵在空间几何中的应用.接下来,我们将结合矩阵来了解 OpenGL 的空间变换. 在使用 ...

  5. 简单理解OpenGL模型视图变换

    前几天学习了OpenGL的绘图原理(其实就是坐标的不停变换变换),看到网上有个比较好的例程,于是学习了下,并在自己感兴趣的部分做了注释. 首先通过glMatrixMode(GL_MODELVIEW)设 ...

  6. Python基于Python实现批量上传文件或目录到不同的Linux服务器

    基于Python实现批量上传文件或目录到不同的Linux服务器   by:授客 QQ:1033553122 实现功能 1 测试环境 1 使用方法 1 1. 编辑配置文件conf/rootpath_fo ...

  7. 基于Python的频谱分析(一)

    1.傅里叶变换  傅里叶变换是信号领域沟通时域和频域的桥梁,在频域里可以更方便的进行一些分析.傅里叶主要针对的是平稳信号的频率特性分析,简单说就是具有一定周期性的信号,因为傅里叶变换采取的是有限取样的 ...

  8. 基于Cocos2d-x学习OpenGL ES 2.0系列——纹理贴图(6)

    在上一篇文章中,我们介绍了如何绘制一个立方体,里面涉及的知识点有VBO(Vertex Buffer Object).IBO(Index Buffer Object)和MVP(Modile-View-P ...

  9. 基于Ubuntu Server 16.04 LTS版本安装和部署Django之(四):安装MySQL数据库

    基于Ubuntu Server 16.04 LTS版本安装和部署Django之(一):安装Python3-pip和Django 基于Ubuntu Server 16.04 LTS版本安装和部署Djan ...

  10. 基于Ubuntu Server 16.04 LTS版本安装和部署Django之(二):Apache安装和配置

    基于Ubuntu Server 16.04 LTS版本安装和部署Django之(一):安装Python3-pip和Django 基于Ubuntu Server 16.04 LTS版本安装和部署Djan ...

随机推荐

  1. java中使用apache poi 读取 doc,docx,ppt,pptx,xls,xlsx,txt,csv格式的文件示例代码

    java使用apache poi 读取 doc,docx,ppt,pptx,xls,xlsx,txt,csv格式的文件示例代码 1.maven依赖添加 在 pom 文件中添加如下依赖 <depe ...

  2. 帮你短时间拿下Git,Git详细教程(浓缩的都是精华)

    Git学习笔记 Git是一个开源的分布式版本控制系统,可以有效.高速地处理从很小到非常大的项目版本管理. 在团队开发中git是必不可少的,它是目前为止最流行的版本控制工具 Git是免费.开源的,由Li ...

  3. 《HTTP权威指南》– 16.重定向与负载均衡

    重定向 重定向 的目标是尽快地将HTTP报文发送到可用的Web服务器上去.在穿过因特网的路径上,HTTP报文传输的方向会受到HTTP应用程序和报文经由的路由设备的影响: 配置创建客户端报文的浏览器应用 ...

  4. vue项目引入echarts柱状图

    一.components文件下引入 barCharts.vue文件 <template> <div :class="className" :style=" ...

  5. 【JVM实战系列】「监控调优体系」实战开发arthas-spring-boot-starter监控你的微服务是否健康

    前提介绍 相信如果经历了我的上一篇Arthas的文章[[JVM实战系列]「监控调优体系」针对于Alibaba-Arthas的安装入门及基础使用开发实战指南]之后,相信你对Arthas的功能和使用应该有 ...

  6. Spring IOC官方文档学习笔记(一)之IOC容器概述

    1.IOC容器简介 (1) org.springframework.beans 与 org.springframework.context 这两个包是Spring IOC容器的基础,在org.spri ...

  7. 【机器学习】李宏毅——Adversarial Attack(对抗攻击)

    研究这个方向的动机,是因为在将神经网络模型应用于实际场景时,它仅仅拥有较高的正确率是不够的,例如在异常检测中.垃圾邮件分类等等场景,那些负类样本也会想尽办法来"欺骗"模型,使模型无 ...

  8. [cocos2d-x]关于坐标系

    本文从cocos2dx官网看到,搬运过来学习一下. cocos2d-x3.X的坐标系 Cocos2d-x坐标系和OpenGL坐标系相同,都是起源于笛卡尔坐标系. 笛卡尔坐标系中定义右手系原点在左下角, ...

  9. 通过Docker启动Solace,并在Spring Boot通过JMS整合Solace

    1 简介 Solace是一个强大的实时性的事件驱动消息队列.本文将介绍如何在Spring中使用,虽然代码使用的是Spring Boot,但并没有使用相关starter,跟Spring的整合一样,可通用 ...

  10. C Primer Plus(4.8)編程練習

    /*C Primer Plus (4.7) 5*/ 1 include<stdio.h> 2 #define BOOK "War and Peace" 3 int ma ...