论文信息

论文标题:Graph Representation Learning via Contrasting Cluster Assignments
论文作者:Chun-Yang Zhang, Hong-Yu Yao, C. L. Philip Chen, Fellow, IEEE and Yue-Na Lin
论文来源:2022, TKDE
论文地址:download
论文代码:download

1 介绍

  我们提出了一种新的无监督图表示学习模型,通过对比聚类分配,称为GRCCA。为了避免极度关注局部或全局视图,GRCCA将聚类算法和对比学习与相反的增广策略相结合,以获得两个视图的平衡。它利用聚类来获取更细粒度的全局信息(cluster-level ),并在节点级对嵌入进行对齐,以保持局部信息的质量,从而优雅地融合局部信息和全局信息。相反的增强策略进一步增强了全局和局部视图的对比度,使模型从图中挖掘出更不变的特征。同时,聚类使模型能够深入了解节点之间的潜在关联,而不仅仅是拓扑邻近性。为了证明其有效性,我们在三种不同的下游任务中与最先进的模型进行了比较,包括节点分类、链接预测和社区检测。实验结果表明,GRCCA在大多数任务中都具有较强的竞争力。

2 方法

  在本节中,将分两部分详细阐述所提出的 GRCCA。第一部分介绍 GRCCA 的总体框架,包括图的增强策略和模型结构。第二部分详细描述了该学习算法。

2.1 定义

  图 $G=(V,E)$,其中 $V$ 是节点集合,$E \subseteq V \times V$ 表示边集合。邻接矩阵 $A \in\{0,1\}^{N \times N}$,其中 $N$ 是节点数量和 $A_{i j}=1$ 表示 $ \left(v_{i}, v_{j}\right) \in \mathcal{E}$ ,节点属性信息由属性矩阵 $X \in \mathbb{R}^{N \times F}$ 表示。

  目的:不使用标签信号学习一个图编码 $f_{\theta}: \mathbb{R}^{N \times F} \times \mathbb{R}^{N \times N} \rightarrow \mathbb{R}^{N \times F^{\prime}}$ ,即 $H=f_{\theta}(X, A) \in \mathbb{R}^{N \times F^{\prime}}$,其中 $F^{\prime} \ll F$。学习到的嵌入可以用于下游任务,如节点分类、链接预测等。

2.2 总体框架

  本文的数据增强策略:【数据增强策略的要求:既可以生成多个视图,又不会产生噪声】

  • Graph Diffusion (GD)  
  • Removing Edges (RE)  

  本文分别使用 Graph Diffusion (GD) 和 Removing Edges (RE) 来关注全局视图和局部视图。这两种方法都是基于图的拓扑结构,并没有引入新的噪声。

  框架如下:

  

2.2.1 Graph Diffusion (GD)

  Graph diffusion 研究了超过 $\text{1-hop}$ 的信息传递,从而可以获得节点的长期依赖。

  图扩散过程定义为:

    $S=\sum\limits _{k=0}^{\infty} \theta_{k} T^{k}\quad\quad\quad(1)$

  其中:

  • $T$ 代表广泛的转移矩阵,$\mathbf{T}=\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}$ ;
  • ${\theta }_{k}$ 代表了权重参数,${\theta }_{k}=\alpha(1-\alpha)^{k}$,$\sum\limits _{k=0}^{\infty} \theta_{k}=1$, $\theta_{k} \in[0,1]$;

  PPR kernel 可以由下式表达:

    $S=\alpha\left(I-(1-\alpha) D^{-1 / 2} A D^{-1 / 2}\right)^{-1}   \quad\quad\quad\quad(2)$

  其中:

  • $\alpha \in(0,1)$ 是随机游走的传送概率  

2.2.2 Removing Edges (RE)

  具体地说,给定一个相邻矩阵 $A$ 和边删除概率 $P_{r e}$,我们随机去除现有的边,可以定义为

    $\widetilde{A}_{i j}=\left\{\begin{array}{ll} 1, & b_{i j}<P_{r e} \text { and } A_{i, j}=1 \\ 0, & \text { otherwise } \end{array}\right.\quad\quad\quad(3)$

  其中,$ \widetilde{A} $ 是局部水平的增强,$b$ 表示从均匀分布$ U(0,1)$中抽样的随机数。

2.2.3 Masking Nodes Features (MNF)

  为获得图属性的不同视角,我们给定一个属性矩阵 $X$ 和掩蔽矩阵 $P_{m n f}$ ,我们随机选择属性的维数来掩蔽,而不是单独掩蔽每个节点,可以表示为:

    $\tilde{X}_{i}=X_{i} \odot M\quad\quad\quad\quad(4)$

  其中$ \tilde{X}$ 是属性增强矩阵,$ M \in\{0,1\}^{F}$是一个 $P_{m n f}$ 中一个百分比为零的向量。

  该策略不会导致过度差异,因此不会破坏多个视角之间的关系,也不会将新的噪声带来对比学习。图的拓扑结构和属性策略不仅提供了多种多视图知识,而且进一步增强了全局视图和局部视图之间的对比。

2.2.4 表示学习

  数据增强后,将生成的两个增广图输入共享图编码器 $f_{\theta}$ 和非线性投影仪 $g_{\theta}$,如 Fig. 1 所示。图表示学习的关键是同时保留拓扑结构和属性的信息。

  理论上,任何考虑到这两个方面的模型都可以用作编码器$f_{\theta}$。现有的图编码器大多是基于邻域聚合的。通过多层邻域信息聚合,它们可以捕获长期图信息,由

    $\mathbf{h}_{v}^{k}=\sigma\left(\mathcal{E} \cdot \mathbf{h}_{v}^{k-1}+\mathbf{W} \cdot \sum\limits _{u \in N(v)} h_{u}^{k-1} /|N(v)|\right)\quad\quad\quad(5)$

  其中 $\mathcal{E}$ 和 $\mathbf{W}$ 为可学习参数,$\sigma$ 为激活函数,$N(v)$ 表示目标节点 $v$ 的邻域节点。

  本文以 GCN 为实例,获得节点嵌入$H=f_{\theta}(X, A) $,它可以被定义为

    $H=\sigma\left(\hat{D}^{-1 / 2} \hat{A} \hat{D}^{-1 / 2} X \Theta\right)\quad\quad\quad(6)$

  为了增强对比学习的表达能力,我们进一步利用一个非线性投影仪,即MLP,将节点嵌入转移到一个度量空间中,即 $Z=g_{\theta}(H) \in \mathbb{R}^{N \times F^{\prime}}$。

2.3 Learning Algorithm

  GRCCA 将对比学习和聚类算法结合在一起,从两个增强的角度最大化相同节点之间的 cluster-level 的一致性。对比聚类分配不仅促进了对比学习和聚类算法之间的合作,而且还提供了一种理想的方法来协调局部和全局视图。

  获得两个视图的表示 $Z_{v}$ 和 $Z_{u}$ 后,然后应用 k-means ,分别得到各自的聚类中心矩阵 $C_{v} \in \mathbb{R}^{K \times F^{\prime}}$ 和 $C_{u} \in \mathbb{R}^{K \times F^{\prime}} $($K$ 代表这 cluster 数目)。进一步计算两个视图各自的聚类分配矩阵 $Q_{v}$ 和 $Q_{u}$【 $q_{v_{i}}=\mathbb{I}_{z_{v_{i}} \in C_{v}^{K}} $ 或 $q_{u_{i}}=\mathbb{I}_{z_{u_{i}} \in C_{u}^{K}}$】。

  为了在两个视图之间实现 cluster-level 对比学习,提出的 GRCCA 通过最小化交叉熵损失,从不同角度强制相同的节点来识别彼此的聚类分配。例如,给定任意一对相同的节点 $v_i$ 和 $u_i$,节点 $v_i$ 和节点 $u_i$ 的聚类分配 $Q_{u_{i}}$ 之间的一致性可以定义为:

    $p_{v_{i}}=\operatorname{softmax}\left(z_{v_{i}} C_{u}^{\mathrm{T}} / \tau\right)\quad\quad\quad(7)$

  与以往的图对比学习模型和基于聚类的图表示学习模型不同,GRCCA将对比学习和聚类算法结合在一起,从两个增强的角度最大化相同节点之间的 cluster-level 的一致性。

  通过最小化交叉熵损失,保证了节点之间的一致性:

    $\ell\left(q_{u_{i}}, p_{v_{i}}\right)=-q_{u_{i}} \log p_{v_{i}}\quad\quad\quad(8)$

  因此,对比聚类损失可以定义为:

    $\mathcal{L}_{c}=\frac{1}{N} \sum\limits _{i=0}^{N}\left[\ell\left(q_{v_{i}}, p_{u_{i}}\right)+\ell\left(q_{u_{i}}, p_{v_{i}}\right)\right]\quad\quad\quad(9)$

  其中,$N$ 为节点数。值得注意的是,对比聚类分配可以被视为一种特殊的对比学习方式,它可以比较多个图视角之间的聚类分配,而不是节点嵌入。它隐式地驱动节点嵌入来接近它们相应的原型,并与其他原型区分开来。直观地说,它等价于最大化节点嵌入和相应的原型之间的互信息。

  受多头注意力机制的启发,GRCCA采用了 multi-clustering strategy 来增加 cluster-level  信息的多样性。具体来说,我们对每个视图同步执行多个聚类,生成多个成对对比材料 $\left\{\left(C_{v}^{1}, C_{u}^{1}, Q_{v}^{1}, Q_{u}^{1}\right), \ldots,\left(C_{v}^{h}, C_{u}^{h}, Q_{v}^{h}, Q_{u}^{h}\right)\right\}$,并利用对比聚类分配来确保其聚类水平的一致性。因此,总损失可以由

    $\mathcal{L}_{m c}=\frac{1}{h} \sum_{i=0}^{h} \mathcal{L}_{c}^{i}\quad\quad\quad(10)$

  其中,$h$ 为对比材料的个数。

  该学习算法总结在 Algorithm 1中:

  

  首先,我们应用两个图增广函数 $t_{1} \sim T$ 和 $t_{2} \sim T$ 生成两个增广图 $\widetilde{G}_{1}$ 和 $\widetilde{G}_{2}$,其中 $t_{1}$ 由 GD 和 MNF 组成,$t_{2}$ 包括 RE 和 MNF。其次,我们使用图编码器 $f_{\theta}$ 和非线性投影仪 $g_{\theta}$ 分别生成两个视图的节点表示。第三,利用具有多聚类策略 $K_{m}$ 的 k-means 生成聚类分配 $Q_{v}$、$Q_{u}$ 和原型 $C_{v}$、$C_{u}$。第四,我们最小化了 Eq. (10) 中的对比损失,可以从不同的角度来加强相同节点之间的 cluster-level  一致性。否则,我们将尝试两种不同的集群分配方案:异步版本和同步版本。异步版本使用来自前一个 epoch 的表示矩阵来生成集群分配,而同步版本则使用当前的表示矩阵。值得注意的是,异步版本需要初始化一个memory bank $B$,并使用每一轮表示来更新它。最后,将从图编码器 $f_{\theta}$ 中学习到的节点嵌入用于下游任务。

3 Experiments

3.1 Datasets

  

  • Cora,Citeseer 和 Pubmed 都是 citation networks
  • Amazon-Photo 和 Amazon-Computers 是两个co-purchase graphs
  • Coauthor-CS 是一个 co-authorship graph

3.2 Node Classification

  我们选择了6个最先进的无监督模型,包括DGI,GMI,MVGRL,GIC,GCA和MERIT,以及3个经典的GNN模型:ChebyshevGCN,GCN,和 GAT 作为基线。

  对于三个引文网络,我们对每个类随机抽取20个节点来形成训练集,1000个节点作为测试集。而对于其他三个数据集,我们对每个类分别随机选择30个节点进行训练和验证,其余的节点用于测试。

  超参数设置:

  

  结果:

  

3.3 Link Prediction

  

3.4 Community Detection

  

3.5 Ablation Study

  

3.6 Complexity Analysis

  

  可学习参数的数量

  

论文解读(GRCCA)《 Graph Representation Learning via Contrasting Cluster Assignments》的更多相关文章

  1. 论文阅读 Dynamic Graph Representation Learning Via Self-Attention Networks

    4 Dynamic Graph Representation Learning Via Self-Attention Networks link:https://arxiv.org/abs/1812. ...

  2. 论文解读(SUGRL)《Simple Unsupervised Graph Representation Learning》

    Paper Information Title:Simple Unsupervised Graph Representation LearningAuthors: Yujie Mo.Liang Pen ...

  3. 论文解读GALA《Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning》

    论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learn ...

  4. 论文解读(GMI)《Graph Representation Learning via Graphical Mutual Information Maximization》2

    Paper Information 论文作者:Zhen Peng.Wenbing Huang.Minnan Luo.Q. Zheng.Yu Rong.Tingyang Xu.Junzhou Huang ...

  5. 论文解读(GMI)《Graph Representation Learning via Graphical Mutual Information Maximization》

    Paper Information 论文作者:Zhen Peng.Wenbing Huang.Minnan Luo.Q. Zheng.Yu Rong.Tingyang Xu.Junzhou Huang ...

  6. 论文解读(MERIT)《Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning》

    论文信息 论文标题:Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning ...

  7. 论文解读(SUBG-CON)《Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning》

    论文信息 论文标题:Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning论文作者:Yizhu Ji ...

  8. 论文阅读 dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation Learning

    6 dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation Learning207 link:https ...

  9. 论文解读《Deep Resdual Learning for Image Recognition》

    总的来说这篇论文提出了ResNet架构,让训练非常深的神经网络(NN)成为了可能. 什么是残差? "残差在数理统计中是指实际观察值与估计值(拟合值)之间的差."如果回归模型正确的话 ...

随机推荐

  1. LGCF235B题解

    简单期望/fad 题意明确,不说了. 对于高次期望,一个套路的方法是维护低次期望(?) 考虑 dp,设 \(dp1[i]\) 为前 \(i\) 次点击中 所有连续的 \(O\) 的长度之和,\(dp2 ...

  2. Ubuntu20.04安装RabbitMQ

    本博客旨在自我学习使用,如有任何疑问请及时联系博主 安装erlang 由于RabbitMq需要erlang语言的支持,在安装RabbitMq之前需要安装erlang sudo apt-get inst ...

  3. python发送邮件之宝藏库yagmail

    之前使用email模块+smtplib模块发送邮件,虽然可以实现功能,但过程比较繁琐,今天发现一个宝藏库(yagmail),可以说是炒鸡好用啦!!! 贴上实现代码,大家细品 yagmail安装 pip ...

  4. vulhub漏洞环境搭建

    (搭建之前建议更换成阿里的源) 在纯净ubuntu中部署vulhub环境: 1.安装docker,并用docker -v命令验证安装结果: curl -s https://get.docker.com ...

  5. 两天入门SolidWorks2016

    视频:https://www.bilibili.com/video/BV1ub411c7ct 饭前甜点--基本设置 一.界面设置 1.1 调出文件栏 打开SOLIDWORKS 2016 x64 Edi ...

  6. 『现学现忘』Docker基础 — 35、实战:自定义CentOS镜像

    目录 1.前提说明 2.编写Dockerfile文件 3.构建镜像 4.运行镜像 5.列出镜像的变更历史 1)目标:自定义镜像wokong_centos. 2)所用到的保留字指令: FROM:基础镜像 ...

  7. spring学习一:spring入门及相关概念介绍

      1:Spring的概念:(03年兴起) (1)   开源的轻量级的框架(无需复杂的环境,不依赖其他) (2)   一站式框架(Spring在javaee的三层结构中,对每一层都提供不同的解决技术: ...

  8. Javascript 占位符替换

    String.prototype.format=function(){ if(arguments.length===0){ return String(this); } let reg=/(\{\d\ ...

  9. CEPH-3:cephfs功能详解

    ceph集群cephfs使用详解 一个完整的ceph集群,可以提供块存储.文件系统和对象存储. 本节主要介绍文件系统cephfs功能如何灵活的使用,集群背景: [cephadmin@yq01-aip- ...

  10. 无人驾驶—高精地图和V2X

    高精地图将厘米级的静态信息传传递给无人车V2X将路况上的动态信息传递给无人车 高精地图的作用 高精地图与传统地图的对比 高精地图与定位的关系 上图左侧是感知到的区域,右侧是高精地图,之后进行拼接获得车 ...