JOIOI王国 - 二分+贪心
题面
题解
通过一句经典的话“最大值的最小值” 我判断它是二分题,
不难发现,整个图形中两个省的分界线是一条单调不递减或单调不递增的折线。
而且,越到后来它的最大值只会越来越大,最小值只会越来越小,极差只会越来越大。
所以如果我们把ans上界定下来了,我们就可以贪心的让它其中一个区域的值在 [maxa - ans , maxa] 的灰色地带发展,然后判断另一个区域是否合法。由于另一个区域的点数越少越好,所以在灰色地带要尽量发展得广。
我们只能先定义一个 p 表示当前行两省的分界, 然后在第一行尽量扩展得远,下一行在 [0 , p]之间扩展得远,这样不仅可以让另一个区域的点更少,而且可以让下一行有更大的发展空间。
其它的贪心方法就不行了,所以分别行数从小到大和从大到小各枚举一次,然后做个左右对称再来。
CODE
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<set>
#define LL long long
using namespace std;
inline LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f = -1;s = getchar();}
while(s >= '0' && s <= '9'){x = x * 10 + s - '0';s = getchar();}
return x * f;
}
LL n,m,i,j,s,o,k,flag = 0;
LL a[2005][2005];
int b[2005],c[2005];
int x1 = 1,x2 = 1,y1 = 1,y2 = 1;
LL maxl[2005][2005];
LL maxr[2005][2005];
LL minl[2005][2005];
LL minr[2005][2005];
LL ans = 1e18;
bool check(LL mid) {
LL minn = a[x1][y1] - mid;
// cout<<minn<<endl;
LL p = m,mi1 = 0x7f7f7f7f,mi2 = 0x7f7f7f7f,ma1=0,ma2=0;
for(int i = 1;i <= n;i ++) {
int pp = p;
for(int j = 0;j <= pp;j ++) {
if(minl[i][j] >= minn) {
p = j;
}
}
mi1 = min(mi1,minl[i][p]);
ma1 = max(ma1,maxl[i][p]);
mi2 = min(mi2,minr[i][p + 1]);
ma2 = max(ma2,maxr[i][p + 1]);
}
// cout<<"ok1"<<endl;
if(max(ma1 - mi1,ma2 - mi2) <= mid) return 1;
p = m,mi1 = 0x7f7f7f7f,mi2 = 0x7f7f7f7f,ma1=0,ma2=0;
for(int i = n;i > 0;i --) {
int pp = p;
for(int j = 0;j <= pp;j ++) {
if(minl[i][j] >= minn) {
p = j;
}
}
mi1 = min(mi1,minl[i][p]);
ma1 = max(ma1,maxl[i][p]);
mi2 = min(mi2,minr[i][p + 1]);
ma2 = max(ma2,maxr[i][p + 1]);
}
// cout<<"ok2"<<endl;
if(max(ma1 - mi1,ma2 - mi2) <= mid) return 1;
p = 0,mi1 = 0x7f7f7f7f,mi2 = 0x7f7f7f7f,ma1=0,ma2=0;
for(int i = 1;i <= n;i ++) {
int pp = p;
for(int j = m;j >= pp;j --) {
if(minr[i][j + 1] >= minn) {
p = j;
}
}
mi1 = min(mi1,minl[i][p]);
ma1 = max(ma1,maxl[i][p]);
mi2 = min(mi2,minr[i][p + 1]);
ma2 = max(ma2,maxr[i][p + 1]);
}
// cout<<"ok3"<<endl;
if(max(ma1 - mi1,ma2 - mi2) <= mid) return 1;
p = 0,mi1 = 0x7f7f7f7f,mi2 = 0x7f7f7f7f,ma1=0,ma2=0;
for(int i = n;i > 0;i --) {
int pp = p;
for(int j = m;j >= pp;j --) {
if(minr[i][j + 1] >= minn) {
p = j;
}
}
// printf("p---%d\n",p);
mi1 = min(mi1,minl[i][p]);
ma1 = max(ma1,maxl[i][p]);
mi2 = min(mi2,minr[i][p + 1]);
ma2 = max(ma2,maxr[i][p + 1]);
}
// cout<<"ok4"<<endl;
if(max(ma1 - mi1,ma2 - mi2) <= mid) return 1;
return 0;
}
LL solve(LL l,LL r) {
// printf("%lld %lld\n",l,r);
if(l >= r - 1) {
if(check(l)) return l;
return r;
}
LL mid = (l + r) / 2;
if(check(mid)) return solve(l,mid);
return solve(mid,r);
}
int main() {
n = read();m = read();
for(int i = 1;i <= n;i ++) {
minl[i][0] = 1e18;
for(int j = 1;j <= m;j ++) {
a[i][j] = read();
if(a[i][j] > a[x1][y1]) x1 = i,y1 = j;
if(a[i][j] < a[x2][y2]) x2 = i,y2 = j;
minl[i][j] = min(minl[i][j - 1],a[i][j]);
maxl[i][j] = max(maxl[i][j - 1],a[i][j]);
}
minr[i][m + 1] = 1e18;
for(int j = m;j > 0;j --) {
minr[i][j] = min(minr[i][j + 1],a[i][j]);
maxr[i][j] = max(maxr[i][j + 1],a[i][j]);
}
// for(int j = 1;j <= m;j ++) {
// printf("%lld ",minr[i][j]);
// }putchar('\n');
}
printf("%lld\n",solve(0,a[x1][y1] - a[x2][y2]));
return 0;
}
JOIOI王国 - 二分+贪心的更多相关文章
- 「JOI 2017 Final」JOIOI 王国
「JOI 2017 Final」JOIOI 王国 题目描述 题目译自 JOI 2017 Final T3「 JOIOI 王国 / The Kingdom of JOIOI」 JOIOI 王国是一个 H ...
- 「题解」JOIOI 王国
「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...
- Codeforces Gym 100231B Intervals 线段树+二分+贪心
Intervals 题目连接: http://codeforces.com/gym/100231/attachments Description 给你n个区间,告诉你每个区间内都有ci个数 然后你需要 ...
- 2016-2017 ACM-ICPC CHINA-Final Ice Cream Tower 二分+贪心
/** 题目:2016-2017 ACM-ICPC CHINA-Final Ice Cream Tower 链接:http://codeforces.com/gym/101194 题意:给n个木块,堆 ...
- 【bzoj2097】[Usaco2010 Dec]Exercise 奶牛健美操 二分+贪心
题目描述 Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的小路上奔跑.这些奶牛的路径集合可以被表示成一个点集和一些连接 两个顶点的双向路,使得每对点之间恰好有一条简单路径. ...
- Codeforces_732D_(二分贪心)
D. Exams time limit per test 1 second memory limit per test 256 megabytes input standard input outpu ...
- CF732D Exams 二分 贪心
思路:二分+贪心 提交次数:10次以上 错因:刚开始以为二分(边界,$+1or-1$)写错了,调了半天,后来才发现是$ck()$写错了.开始只判了最后是否小于零,而应该中间一旦小于零就$return\ ...
- $CF949D\ Curfew$ 二分/贪心
正解:二分/贪心 解题报告: 传送门$QwQ$ 首先这里是二分还是蛮显然的?考虑二分那个最大值,然后先保证一个老师是合法的再看另一个老师那里是否合法就成$QwQ$. 发现不太会搞这个合不合法的所以咕了 ...
- $bzoj2067\ szn$ 二分+贪心
正解:二分+贪心 解题报告: 传送门$QwQ$ 题目大意就说有一棵树,然后要用若干条线覆盖所有边且不能重叠.问最少要用几条线,在用线最少的前提下最长的线最短是多长. 昂首先最少用多少条线这个还是蛮$e ...
随机推荐
- .NET 处理[未能为 SSLTLS 安全通道建立信任关系]问题
更新记录 2022年4月16日本文迁移自Panda666原博客,原发布时间:2021年7月16日. 在.NET的开发过程中,发现[基础连接已经关闭: 未能为 SSL/TLS 安全通道建立信任关系]问题 ...
- Java学习-第一阶段-第一节:Java概述
JAVA概述 Java版本 原网址(https://www.oracle.com/java/technologies/java-se-support-roadmap.html) Oracle 将仅将某 ...
- 【Parcel 2 + Vue 3】从0到1搭建一款极快,零配置的Vue3项目构建工具
前言 一周时间,没见了,大家有没有想我啊!哈哈!我知道肯定会有的.言归正传,我们切入正题.上一篇文章中我主要介绍了使用Vite2+Vue3+Ts如何更快的入手项目.那么,今天我将会带领大家认识一个新的 ...
- Freeswitch使用originate转dialplan
概述 Freeswitch是一款非常好用的开源VOIP软交换平台. 最近在对fs做一些功能测试,测试的过程中产生的一个需求,如何从fs发起呼叫并把后续的呼叫流程转到某一个dialplan上,这样在测试 ...
- 02 java包装类型的缓存机制
02 java包装类型的缓存机制 Java 基本数据类型的包装类型的大部分都用到了缓存机制来提升性能. Byte,Short,Integer,Long 这 4 种包装类默认创建了数值 [-128,12 ...
- 监控pos收银机
1.打开pos收银机snmp功能 控制面板-->程序和功能-->启用或关闭windows功能→简单网络管理协议(SNMP) 2.配置snmp服务 控制面板-->管理工具-->服 ...
- js烧脑面试题大赏
本文精选了20多道具有一定迷惑性的js题,主要考察的是类型判断.作用域.this指向.原型.事件循环等知识点,每道题都配有笔者详细傻瓜式的解析,偏向于初学者,大佬请随意. 第1题 let a = 1 ...
- 使用docker buildx打包发布多平台镜像
2022-07-07 个人比较喜欢影视作品,下载了大量的剧集视频,有些文件的命名不规范,就需要重新命名,之前是用的一款 renamer 客户端软件,用起来不太爽就自己做了个 bs 架构的重命名软件并开 ...
- 一篇文章带你走进meta viewport的世界
一.什么是 meta 标签? 可提供有关页面的元信息 二.为什么需要移动端适配? 因为我们在 pc 端上看到的页面都是比较大的,在 pc 端上都是正常显示的,自动不会被进行缩放,除非手动进行放大或缩小 ...
- Javaweb-JSP详解
一.什么是JSP Java Server Pages:Java服务器端页面,和Servlet一样,用于动态web技术 最大的特点: 写JSP就像在写HTML 区别: HTML只给用户提供静态的数据 J ...