MatrixOne从入门到实践——SSB性能测试

SSB 星型模式基准测试是 OLAP 数据库性能测试的常用场景,通过本篇教程,您可以了解到如何在 MatrixOne 中实现 SSB 测试。

测试环境

  • 机器配置

    机器数量 部署方式 CPU 内存 磁盘
    1 单节点 6 36G 100G
  • MO版本

    0.5.1版本

编译dbgen

  • 获取源码

    git clone https://github.com/vadimtk/ssb-dbgen.git

    如果因为网络问题导致clone失败,建议使用gitee将上述链接项目导入到自己的仓库,然后使用gitee的链接clone

  • 编译

    cd ssb-dbgen
    make

生成数据

当使用 -s 1dbgen 命令会生产近600万行数据(670MB),当使用-s 10时会生产近6000万行数据,会耗费大量时间。

./dbgen -s 1 -T c
./dbgen -s 1 -T l
./dbgen -s 1 -T p
./dbgen -s 1 -T s
./dbgen -s 1 -T d

生成完成后,会有以下数据文件,这里只生成了多表的数据。

[root@motest ssb]# ll -h |grep tbl
-r-sr-S--T. 1 root root 3.2M Oct 1 09:30 customer.tbl
-rw-r--r--. 1 root root 270K Oct 1 09:31 date.tbl
-rw-r--r--. 1 root root 641M Oct 1 09:31 lineorder.tbl
-rw-r--r--. 1 root root 20M Oct 1 09:31 part.tbl
-rw-r--r--. 1 root root 187K Oct 1 09:31 supplier.tbl

SSB的大宽表数据集请下载:

wget https://community-shared-data-1308875761.cos.ap-beijing.myqcloud.com/lineorder_flat.tar.bz2

解压数据集:

 tar -jxvf lineorder_flat.tar.bz2

MatrixOne 准备工作

  • 安装 、 启动MatrixOne

    详情请参考MatrixOne部署一文

  • 建表

    create database if not exists ssb;
    use ssb;
    drop table if exists lineorder;
    drop table if exists part;
    drop table if exists supplier;
    drop table if exists customer;
    drop table if exists dates;
    drop table if exists lineorder_flat; create table lineorder (
    lo_orderkey bigint,
    lo_linenumber int,
    lo_custkey int,
    lo_partkey int,
    lo_suppkey int,
    lo_orderdate date,
    lo_orderpriority char (15),
    lo_shippriority tinyint,
    lo_quantity double,
    lo_extendedprice double,
    lo_ordtotalprice double,
    lo_discount double,
    lo_revenue double,
    lo_supplycost double,
    lo_tax double,
    lo_commitdate date,
    lo_shipmode char (10)
    ) ; create table part (
    p_partkey int,
    p_name varchar (22),
    p_mfgr char (6),
    p_category char (7),
    p_brand char (9),
    p_color varchar (11),
    p_type varchar (25),
    p_size int,
    p_container char (10)
    ) ; create table supplier (
    s_suppkey int,
    s_name char (25),
    s_address varchar (25),
    s_city char (10),
    s_nation char (15),
    s_region char (12),
    s_phone char (15)
    ) ; create table customer (
    c_custkey int,
    c_name varchar (25),
    c_address varchar (25),
    c_city char (10),
    c_nation char (15),
    c_region char (12),
    c_phone char (15),
    c_mktsegment char (10)
    ) ; create table dates (
    d_datekey date,
    d_date char (18),
    d_dayofweek char (9),
    d_month char (9),
    d_yearmonthnum int,
    d_yearmonth char (7),
    d_daynuminweek varchar(12),
    d_daynuminmonth int,
    d_daynuminyear int,
    d_monthnuminyear int,
    d_weeknuminyear int,
    d_sellingseason varchar (12),
    d_lastdayinweekfl varchar (1),
    d_lastdayinmonthfl varchar (1),
    d_holidayfl varchar (1),
    d_weekdayfl varchar (1)
    ) ; CREATE TABLE lineorder_flat(
    LO_ORDERKEY bigint key,
    LO_LINENUMBER int,
    LO_CUSTKEY int,
    LO_PARTKEY int,
    LO_SUPPKEY int,
    LO_ORDERDATE date,
    LO_ORDERPRIORITY char(15),
    LO_SHIPPRIORITY tinyint,
    LO_QUANTITY double,
    LO_EXTENDEDPRICE double,
    LO_ORDTOTALPRICE double,
    LO_DISCOUNT double,
    LO_REVENUE int unsigned,
    LO_SUPPLYCOST int unsigned,
    LO_TAX double,
    LO_COMMITDATE date,
    LO_SHIPMODE char(10),
    C_NAME varchar(25),
    C_ADDRESS varchar(25),
    C_CITY char(10),
    C_NATION char(15),
    C_REGION char(12),
    C_PHONE char(15),
    C_MKTSEGMENT char(10),
    S_NAME char(25),
    S_ADDRESS varchar(25),
    S_CITY char(10),
    S_NATION char(15),
    S_REGION char(12),
    S_PHONE char(15),
    P_NAME varchar(22),
    P_MFGR char(6),
    P_CATEGORY char(7),
    P_BRAND char(9),
    P_COLOR varchar(11),
    P_TYPE varchar(25),
    P_SIZE int,
    P_CONTAINER char(10)
    );
  • 导入数据

    请根据自己生成的数据的路径,自行调整导入语句中的路径参数

    如我生成数据的路径为:/home/ssb/ssb/***.tbl

    则对应单表导入语句为:

    load data infile '/home/ssb/ssb/supplier.tbl' into table supplier FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' LINES TERMINATED BY '\n';
    
    load data infile '/home/ssb/ssb/customer.tbl' into table customer FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' LINES TERMINATED BY '\n';
    
    load data infile '/home/ssb/ssb/date.tbl' into table dates FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' LINES TERMINATED BY '\n';
    
    load data infile '/home/ssb/ssb/part.tbl' into table part FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' LINES TERMINATED BY '\n';
    
    load data infile '/home/ssb/ssb/lineorder.tbl' into table lineorder FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' LINES TERMINATED BY '\n';

    大宽表导入语句为:

    load data infile '/home/ssb/ssb/lineorder_flat.tbl' into table lineorder_flat FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' LINES TERMINATED BY '\n';

运行SSB测试

  • 大宽表查询

    查询语句

    --Q1.1
    SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue FROM lineorder_flat WHERE year(LO_ORDERDATE)=1993 AND LO_DISCOUNT BETWEEN 1 AND 3 AND LO_QUANTITY < 25; --Q1.2
    SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue FROM lineorder_flat WHERE year(LO_ORDERDATE)=1994 AND LO_DISCOUNT BETWEEN 4 AND 6 AND LO_QUANTITY BETWEEN 26 AND 35; --Q1.3
    SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue FROM lineorder_flat WHERE year(LO_ORDERDATE)=1994 AND LO_DISCOUNT BETWEEN 5 AND 7 AND LO_QUANTITY BETWEEN 26 AND 35; --Q2.1
    SELECT sum(LO_REVENUE),year(LO_ORDERDATE) AS year,P_BRAND FROM lineorder_flat WHERE P_CATEGORY = 'MFGR#12' AND S_REGION = 'AMERICA' GROUP BY year(LO_ORDERDATE), P_BRAND ORDER BY year,P_BRAND; --Q2.2
    SELECT sum(LO_REVENUE), year(LO_ORDERDATE) AS year, P_BRAND FROM lineorder_flat WHERE P_BRAND BETWEEN 'MFGR#2221' AND 'MFGR#2228' AND S_REGION = 'ASIA' GROUP BY year(LO_ORDERDATE), P_BRAND ORDER BY year, P_BRAND; --Q2.3
    SELECT sum(LO_REVENUE), year(LO_ORDERDATE) AS year, P_BRAND FROM lineorder_flat WHERE P_BRAND = 'MFGR#2239' AND S_REGION = 'EUROPE' GROUP BY year(LO_ORDERDATE), P_BRAND ORDER BY year, P_BRAND; --Q3.1
    SELECT C_NATION, S_NATION, year(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenue FROM lineorder_flat WHERE C_REGION = 'ASIA' AND S_REGION = 'ASIA' AND year(LO_ORDERDATE) between 1992 AND 1997 GROUP BY C_NATION, S_NATION, year(LO_ORDERDATE) ORDER BY year asc, revenue desc; --Q3.2
    SELECT C_CITY, S_CITY, year(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenue FROM lineorder_flat WHERE C_NATION = 'CHINA' AND S_NATION = 'CHINA' AND year(LO_ORDERDATE) between 1992 AND 1997 GROUP BY C_CITY, S_CITY, year(LO_ORDERDATE) ORDER BY year asc, revenue desc; --Q3.3
    SELECT C_CITY, S_CITY, year(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenue FROM lineorder_flat WHERE (C_CITY = 'UNITED KI0' OR C_CITY = 'UNITED KI7') AND (S_CITY = 'UNITED KI0' OR S_CITY = 'UNITED KI7') AND year(LO_ORDERDATE) between 1992 AND 1997 GROUP BY C_CITY, S_CITY, year(LO_ORDERDATE) ORDER BY year asc, revenue desc; --Q3.4
    SELECT C_CITY, S_CITY, year(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenue FROM lineorder_flat WHERE (C_CITY = 'UNITED KI0' OR C_CITY = 'UNITED KI7') AND (S_CITY = 'MOZAMBIQU1' OR S_CITY = 'KENYA 4') AND year(LO_ORDERDATE)= 1997 GROUP BY C_CITY, S_CITY, year(LO_ORDERDATE) ORDER BY year asc, revenue desc; --Q4.1
    SELECT year(LO_ORDERDATE) AS year, C_NATION, sum(LO_REVENUE - LO_SUPPLYCOST) AS profit FROM lineorder_flat WHERE C_REGION = 'AMERICA' AND S_REGION = 'AMERICA' AND (P_MFGR = 'MFGR#1' OR P_MFGR = 'MFGR#2') GROUP BY year(LO_ORDERDATE), C_NATION ORDER BY year, C_NATION; --Q4.2
    SELECT year(LO_ORDERDATE) AS year, S_NATION, P_CATEGORY, sum(LO_REVENUE - LO_SUPPLYCOST) AS profit FROM lineorder_flat WHERE C_REGION = 'AMERICA' AND S_REGION = 'AMERICA' AND (year(LO_ORDERDATE) = 1997 OR year(LO_ORDERDATE) = 1998) AND (P_MFGR = 'MFGR#1' OR P_MFGR = 'MFGR#2') GROUP BY year(LO_ORDERDATE), S_NATION, P_CATEGORY ORDER BY year, S_NATION, P_CATEGORY; --Q4.3
    SELECT year(LO_ORDERDATE) AS year, S_CITY, P_BRAND, sum(LO_REVENUE - LO_SUPPLYCOST) AS profit FROM lineorder_flat WHERE S_NATION = 'UNITED STATES' AND (year(LO_ORDERDATE) = 1997 OR year(LO_ORDERDATE) = 1998) AND P_CATEGORY = 'MFGR#14' GROUP BY year(LO_ORDERDATE), S_CITY, P_BRAND ORDER BY year, S_CITY, P_BRAND;
  • 多表查询

    查询语句

    --Q1.1
    select sum(lo_revenue) as revenue
    from lineorder join dates on lo_orderdate = d_datekey
    where year(d_datekey) = 1993 and lo_discount between 1 and 3 and lo_quantity < 25; --Q1.2
    select sum(lo_revenue) as revenue
    from lineorder
    join dates on lo_orderdate = d_datekey
    where d_yearmonthnum = 199401
    and lo_discount between 4 and 6
    and lo_quantity between 26 and 35; --Q1.3
    select sum(lo_revenue) as revenue
    from lineorder
    join dates on lo_orderdate = d_datekey
    where d_weeknuminyear = 6 and year(d_datekey) = 1994
    and lo_discount between 5 and 7
    and lo_quantity between 26 and 35; --Q2.1
    select sum(lo_revenue) as lo_revenue, year(d_datekey) as year, p_brand
    from lineorder
    join dates on lo_orderdate = d_datekey
    join part on lo_partkey = p_partkey
    join supplier on lo_suppkey = s_suppkey
    where p_category = 'MFGR#12' and s_region = 'AMERICA'
    group by year(d_datekey), p_brand
    order by year, p_brand; --Q2.2
    select sum(lo_revenue) as lo_revenue, year(d_datekey) as year, p_brand
    from lineorder
    join dates on lo_orderdate = d_datekey
    join part on lo_partkey = p_partkey
    join supplier on lo_suppkey = s_suppkey
    where p_brand between 'MFGR#2221' and 'MFGR#2228' and s_region = 'ASIA'
    group by year(d_datekey), p_brand
    order by year, p_brand; --Q2.3
    select sum(lo_revenue) as lo_revenue, year(d_datekey) as year, p_brand
    from lineorder
    join dates on lo_orderdate = d_datekey
    join part on lo_partkey = p_partkey
    join supplier on lo_suppkey = s_suppkey
    where p_brand = 'MFGR#2239' and s_region = 'EUROPE'
    group by year(d_datekey), p_brand
    order by year, p_brand; --Q3.1
    select c_nation, s_nation, year(d_datekey) as year, sum(lo_revenue) as lo_revenue
    from lineorder
    join dates on lo_orderdate = d_datekey
    join customer on lo_custkey = c_custkey
    join supplier on lo_suppkey = s_suppkey
    where c_region = 'ASIA' and s_region = 'ASIA' and year(d_datekey) between 1992 and 1997
    group by c_nation, s_nation, year(d_datekey)
    order by year asc, lo_revenue desc; --Q3.2
    select c_city, s_city, year(d_datekey) as year, sum(lo_revenue) as lo_revenue
    from lineorder
    join dates on lo_orderdate = d_datekey
    join customer on lo_custkey = c_custkey
    join supplier on lo_suppkey = s_suppkey
    where c_nation = 'UNITED STATES' and s_nation = 'UNITED STATES'
    and year(d_datekey) between 1992 and 1997
    group by c_city, s_city, year(d_datekey)
    order by year asc, lo_revenue desc; --Q3.3
    select c_city, s_city, year(d_datekey) as year, sum(lo_revenue) as lo_revenue
    from lineorder
    join dates on lo_orderdate = d_datekey
    join customer on lo_custkey = c_custkey
    join supplier on lo_suppkey = s_suppkey
    where (c_city='UNITED KI1' or c_city='UNITED KI5')
    and (s_city='UNITED KI1' or s_city='UNITED KI5')
    and year(d_datekey) between 1992 and 1997
    group by c_city, s_city, year(d_datekey)
    order by year asc, lo_revenue desc; --Q3.4
    select c_city, s_city, year(d_datekey) as year, sum(lo_revenue) as lo_revenue
    from lineorder
    join dates on lo_orderdate = d_datekey
    join customer on lo_custkey = c_custkey
    join supplier on lo_suppkey = s_suppkey
    where (c_city='UNITED KI1' or c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5') and d_yearmonth = '199712'
    group by c_city, s_city, year(d_datekey)
    order by year(d_datekey) asc, lo_revenue desc; --Q4.1
    select year(d_datekey) as year, c_nation, sum(lo_revenue) - sum(lo_supplycost) as profit
    from lineorder
    join dates on lo_orderdate = d_datekey
    join customer on lo_custkey = c_custkey
    join supplier on lo_suppkey = s_suppkey
    join part on lo_partkey = p_partkey
    where c_region = 'AMERICA' and s_region = 'AMERICA' and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2')
    group by year(d_datekey), c_nation
    order by year, c_nation; --Q4.2
    select year(d_datekey) as year, s_nation, p_category, sum(lo_revenue) - sum(lo_supplycost) as profit
    from lineorder
    join dates on lo_orderdate = d_datekey
    join customer on lo_custkey = c_custkey
    join supplier on lo_suppkey = s_suppkey
    join part on lo_partkey = p_partkey
    where c_region = 'AMERICA'and s_region = 'AMERICA'
    and (year(d_datekey) = 1997 or year(d_datekey) = 1998)
    and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2')
    group by year(d_datekey), s_nation, p_category
    order by year, s_nation, p_category; --Q4.3
    select year(d_datekey) as year, s_city, p_brand, sum(lo_revenue) - sum(lo_supplycost) as profit, c_region, s_nation, p_category
    from lineorder
    join dates on lo_orderdate = d_datekey
    join customer on lo_custkey = c_custkey
    join supplier on lo_suppkey = s_suppkey
    join part on lo_partkey = p_partkey
    where
    (year(d_datekey) = 1997 or year(d_datekey) = 1998)
    and s_nation='ALGERIA'
    group by year(d_datekey), s_city, p_brand, c_region, s_nation, p_category
    order by year, s_city, p_brand;

查询报告

  • 大宽表

    查询ID 第一次查询 第二次查询 第三次查询 第四次查询 第五次查询 平均查询速度
    Q1.1 0.14 sec 0.13 sec 0.14 sec 0.13 sece 0.13 sec 0.134 sec
    Q1.2 0.17 sec 0.14 sec 0.14 sec 0.14 sece 0.15 sec 0.148 sec
    Q1.3 0.14 sec 0.17 sec 0.14 sec 0.16 sec 0.14 sec 0.15 sec
    Q2.1 0.64 sec 0.61 sec 0.59 sec 0.65 sec 0.62 sec 0.622 sec
    Q2.2 0.77 sec 0.77 sec 0.77 sec 0.74 sec 0.75 sec 0.76 sec
    Q2.3 0.58 sec 0.56 sec 0.55 sec 0.60 sec 0.54 sec 0.566 sec
    Q3.1 0.79 sec 0.74 sec 0.76 sec 0.73 sec 0.75 sec 0.754 sec
    Q3.2 0.71 sec 0.72 sec 0.70 sec 0.74 sec 0.70 sec 0.714 sec
    Q3.3 0.99 sec 0.97 sec 0.97 sec 1.10 sec 0.97 sec 1 sec
    Q3.4 1.07 sec 0.98 sec 0.98 sec 0.97 sec 0.97 sec 0.994 sec
    Q4.1 1.13 sec 1.10 sec 1.04 sec 1.04 sec 1.07 sec 1.076 sec
    Q4.2 1.19 sec 1.16 sec 1.18 sec 1.19 sec 1.19 sec 1.182 sec
    Q4.3 0.72 sec 0.74 sec 0.71 sec 0.76 sec 0.69 sec 0.724 sec
  • 多表查询

    查询ID 第一次查询 第二次查询 第三次查询 第四次查询 第五次查询 平均查询速度
    Q1.1 0.08 sec 0.11 sec 0.08 sec 0.09 sec 0.06 sec 0.084 sec
    Q1.2 0.12 sec 0.07 sec 0.07 sec 0.09 sec 0.07 sec 0.084 sec
    Q1.3 0.09 sec 0.08 sec 0.09 sec 0.07 sec 0.10 sec 0.086 sec
    Q2.1 0.28 sec 0.26 sec 0.27 sec 0.26 sec 0.28 sec 0.27 sec
    Q2.2 0.29 sec 0.28 sec 0.28 sec 0.28 sec 0.28 sec 0.282 sec
    Q2.3 0.26 sec 0.26 sec 0.28 sec 0.26 sec 0.23 sec 0.258 sec
    Q3.1 0.40 sec 0.34 sec 0.43 sec 0.36 sec 0.40 sec 0.386 sec
    Q3.2 0.12 sec 0.15 sec 0.10 sec 0.09 sec 0.15 sec 0.122 sec
    Q3.3 0.13 sec 0.06 sec 0.11 sec 0.07 sec 0.10 sec 0.094 sec
    Q3.4 0.08 sec 0.12 sec 0.07 sec 0.11 sec 0.07 sec 0.09 sec
    Q4.1 0.45 sec 0.39 sec 0.46 sec 0.42 sec 0.44 sec 0.432 sec
    Q4.2 0.32 sec 0.40 sec 0.32 sec 0.39 sec 0.31 sec 0.348 sec
    Q4.3 0.36 sec 0.32 sec 0.36 sec 0.32 sec 0.37 sec 0.346 sec
  • 查询对比报告

    通过SSB测试发现,MatrixOne多表join查询性能异常强大,超过了传统的大宽表模型,这意味着在MatrixOne中我们可以使用丰富的数据模型来满足我们的业务需要。

MatrixOne从入门到实践08——SSB性能测试的更多相关文章

  1. MatrixOne从入门到实践03——部署MatrixOne

    MatrixOne从入门到实践--部署MatrixOne 前两章节我们简单介绍了MatrixOne和源码编译了MatrixOne.本章节将使用不同的部署方式,来部署MatrixOne的服务. 注意:不 ...

  2. MatrixOne从入门到实践02——源码编译

    MatrixOne从入门到实践--源码编译 ​ 在部署MatrixOne前,我们可能会比较纠结使用哪个版本合适,MatrixOne在github上有各个版本的Releases,包含源码包和适用于Lin ...

  3. MatrixOne从入门到实践01——初识MatrixOne

    初识MatrixOne 简介 MatrixOrigin 矩阵起源 是一家数据智能领域的创新企业,其愿景是成为数字世界的核心技术提供者. 物理世界的数字化和智能化无处不在.我们致力于建设开放的技术开源社 ...

  4. MatrixOne从入门到实战04——MatrixOne的连接和建表

    MatrixOne从入门到实战--MatrixOne的连接和建表 前景回顾 前几篇文章,为大家介绍了MatrixOne这个产品,以及编译.部署MatrixOne的服务. 直通车: MatrixOne从 ...

  5. Storm实时计算:流操作入门编程实践

    转自:http://shiyanjun.cn/archives/977.html Storm实时计算:流操作入门编程实践   Storm是一个分布式是实时计算系统,它设计了一种对流和计算的抽象,概念比 ...

  6. Python+Selenium基础入门及实践

    Python+Selenium基础入门及实践 32018.08.29 11:21:52字数 3220阅读 23422 一.Selenium+Python环境搭建及配置 1.1 selenium 介绍 ...

  7. 《Python编程:从入门到实践》第十八章笔记:Django最基本用法笔记

    最近在看Python编程:从入门到实践,这是这本书"项目3 Web应用程序"第18章的笔记.记录了django最基本的一些日常用法,以便自己查阅. 可能是我的这本书版本比较老,书上 ...

  8. 《Github入门与实践》读书笔记 蟲咋先生的追求之旅(上)

    <Github入门与实践>作者: [日] 大塚弘记 译者:支鹏浩/刘斌   简介 本书从Git的基本知识和操作方法入手,详细介绍了GitHub的各种功能,GitHub与其他工具或服务的协作 ...

  9. Python编程从入门到实践笔记——异常和存储数据

    Python编程从入门到实践笔记——异常和存储数据 #coding=gbk #Python编程从入门到实践笔记——异常和存储数据 #10.3异常 #Python使用被称为异常的特殊对象来管理程序执行期 ...

随机推荐

  1. 重写并自定义依赖的原生的Bean方法

    转载请注明出处: 在项目开发过程中,往往是直接应用很多jar包中依赖且声明好的Bean,拿来即用,但很多场景也需要对这些原生的Bean 进行自定义,定制化封装,这样在项目使用的过程中,可以使用自定义的 ...

  2. css基础02

    熟练快捷键!方便,要多练!  css复合选择器 不会选孙子,有一个儿子和另一个儿子的孩子(也是孙子)同名了,但子选择器子选择儿子,同名的孙子不选.和后代选择器有一点不一样的. " ,&quo ...

  3. SpringBoot定时任务 - 集成quartz实现定时任务(单实例和分布式两种方式)

    最为常用定时任务框架是Quartz,并且Spring也集成了Quartz的框架,Quartz不仅支持单实例方式还支持分布式方式.本文主要介绍Quartz,基础的Quartz的集成案例本,以及实现基于数 ...

  4. 华为分析&联运活动,助您提升游戏总体付费

    ARPU如何提升?付费率如何提升?活动ROI如何提升?这些都是游戏运营人员较常遇到的难题.华为分析与联运活动可以帮助运营提升这些用户付费指标,通过对玩家打标签和用户画像,对目标群体的进行精准推送,实现 ...

  5. 什么是 DevOps?看这一篇就够了!

    本文作者:Daniel Hu 个人主页:https://www.danielhu.cn/ 目录 一.前因 二.记忆 三.他们说-- 3.1.Atlassian 回答"什么是 DevOps?& ...

  6. 数据分表Mybatis Plus动态表名最优方案的探索

    一.应用场景 大家在使用Mybatis进行开发的时候,经常会遇到一种情况:按照月份month将数据放在不同的表里面,查询数据的时候需要跟不同的月份month去查询不同的表. 但是我们都知道,Mybat ...

  7. Luogu2073 送花 (平衡树)

    打感叹号处为傻逼处 #include <iostream> #include <cstdio> #include <cstring> #include <al ...

  8. mybatis 09: 动态sql --- part1

    作用 可以定义代码片段 可以进行逻辑判断 可以进行循环处理(批量处理),使条件判断更为简单 使用方式 通过mybatis中与动态sql有关的标签来实现 < sql >标签 + < i ...

  9. 【建议收藏】Mac VMWare NAT模式安装 CentOS 7-操作教程

    学习大数据离不开 Linux 系统,网络上大部分文章都是在 Windows 系统下使用 VMWare Workstation 安装 CentOS ,并使用 NAT 模式配置网络.本文基于 Mac OS ...

  10. HCIA-datacom 4.2 实验二:本地AAA配置实验

    关于本实验 AAA是Authentication(认证).Authorization(授权)和Accounting(计费)的简称,是网络安全的一种管理机制,提供了认证.授权.计费三种安全功能.这三种安 ...