上一篇讲了如何应用Tarjan算法求出e-DCC和v-DCC。

那么这一篇就是e-DCC和v-DCC的应用之一:缩点。

先讲e-DCC的缩点。

我们把每一个e-DCC都看成一个节点,把所有桥边(x,y)看成连接编号为c[x]和c[y]的两个e-DCC间的边,这样我们就会得到一棵树或者森林(原图不连通)。给出缩点的代码,这份代码把e-DCC缩点并把生成的树(森林)储存在另一个邻接表中。

#include<bits/stdc++.h>
#define N 100010
using namespace std;
inline int read(){
int data=,w=;char ch=;
while(ch!='-' && (ch<''||ch>''))ch=getchar();
if(ch=='-')w=-,ch=getchar();
while(ch>='' && ch<='')data=data*+ch-'',ch=getchar();
return data*w;
}
struct Edge{
int nxt,to;
#define nxt(x) e[x].nxt
#define to(x) e[x].to
}e[N<<];
struct EdgeC{
int nxtc,toc;
#define nxtc(x) ec[x].nxtc
#define toc(x) ec[x].toc
}ec[N<<];
int head[N],tot=,n,m,cnt,dfn[N],low[N],c[N],bridge[N],dcc;
int headc[N],totc=;
inline void addedge(int f,int t){
nxt(++tot)=head[f];to(tot)=t;head[f]=tot;
}
inline void addedge_c(int f,int t){
nxtc(++totc)=headc[f];toc(totc)=t;headc[f]=totc;
}
void tarjan(int x,int in_edge){
dfn[x]=low[x]=++cnt;
for(int i=head[x];i;i=nxt(i)){
int y=to(i);
if(!dfn[y]){
tarjan(y,i);
low[x]=min(low[x],low[y]);
if(low[y]>dfn[x])
bridge[i]=bridge[i^]=;
}else if(i!=(in_edge^))
low[x]=min(low[x],dfn[y]);
}
}
void dfs(int x){
c[x]=dcc;
for(int i=head[x];i;i=nxt(i)){
int y=to(i);
if(c[y]||bridge[i])continue;
dfs(y);
}
}
int main(){
n=read();m=read();
for(int i=;i<=m;i++){
int x=read(),y=read();
addedge(x,y);addedge(y,x);
}
for(int i=;i<=n;i++)
if(!dfn[i])tarjan(i,);
for(int i=;i<=n;i++){
if(!c[i]){
++dcc;dfs(i);
}
}
for(int i=;i<=tot;i++){
int x=to(i^),y=to(i);
if(c[x]==c[y])continue;
addedge_c(c[x],c[y]);
}
//缩点后的树(森林)的点数为dcc,边数为totc/2
for(int i=;i<totc;i++)
printf("%d %d",toc(i^),toc(i));
return ;
}

v-DCC的缩点由于一个割点可能在很多个v-DCC中而更加麻烦,但是我们也有办法缩。

假设图中有x个割点和y个v-DCC,我们就直接建(x+y)个点的新图。

每一个v-DCC和割点都作为新图的节点存在。建完后我们让每个割点和包含它的v-DCC连边。

给出代码:

#include<bits/stdc++.h>
#define N 100010
using namespace std;
inline int read(){
int data=,w=;char ch=;
while(ch!='-' && (ch<''||ch>''))ch=getchar();
if(ch=='-')w=-,ch=getchar();
while(ch>='' && ch<='')data=data*+ch-'',ch=getchar();
return data*w;
}
struct Edge{
int nxt,to;
#define nxt(x) e[x].nxt
#define to(x) e[x].to
}e[N<<];
struct EdgeC{
int nxtc,toc;
#define nxtc(x) ec[x].nxtc
#define toc(x) ec[x].toc
}ec[N<<];
int head[N],tot=,n,m,rt,dfn[N],low[N],cnt,stk[N],top,num,cut[N];
int headc[N],totc=,new_id[N];
vector<int> dcc[N];
inline void addedge(int f,int t){
nxt(++tot)=head[f];to(tot)=t;head[f]=tot;
}
inline void addedge_c(int f,int t){
nxtc(++totc)=headc[f];toc(totc)=t;headc[f]=totc;
}
void tarjan(int x){
dfn[x]=low[x]=++cnt;
stk[++top]=x;
if(x==rt && head[x]==){
dcc[++num].push_back(x);
return;
}
int flag=;
for(int i=head[x];i;i=nxt(i)){
int y=to(i);
if(!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);
if(low[y]>=dfn[x]){
flag++;
if(x!=rt||flag>)cut[x]=;
num++;int z;
do{
z=stk[top--];
dcc[num].push_back(z);
}while(z!=y);
dcc[num].push_back(x);
}
}else low[x]=min(low[x],dfn[y]);
}
}
int main(){
n=read();m=read();
for(int i=;i<=m;i++){
int x=read(),y=read();
addedge(x,y);addedge(y,x);
}
for(int i=;i<=n;i++)
if(!dfn[i])tarjan(i);
cnt=num;//给每个割点一个新的编号防止重复,从num+1开始
for(int i=;i<=n;i++)
if(cut[i])new_id[i]=++cnt;
for(int i=;i<=cnt;i++){
for(int j=;j<dcc[i].size();j++){
int x=dcc[i][j];
if(cut[x]){//割点和每个v-DCC连边
addedge_c(i,new_id[x]);
addedge_c(new_id[x],i);
}else new_id[x]=i;
}
}
//缩点后的森林(树)点数为cnt,边数为totc/2
for(int i=;i<totc;i+=)
printf("%d %d\n",toc(i^),toc(i));
return ;
}

下一篇更新Tarjan求有向图的SCC以及SCC的缩点

[Tarjan系列] 无向图e-DCC和v-DCC的缩点的更多相关文章

  1. [Tarjan系列] Tarjan算法求无向图的桥和割点

    RobertTarjan真的是一个传说级的大人物. 他发明的LCT,SplayTree这些数据结构真的给我带来了诸多便利,各种动态图论题都可以用LCT解决. 而且,Tarjan并不只发明了LCT,他对 ...

  2. Tarjan求无向图割点、桥详解

    tarjan算法--求无向图的割点和桥   一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不 ...

  3. 牛客D-Where are you /// kruskal+tarjan找无向图内的环

    题目大意: https://ac.nowcoder.com/acm/contest/272/D 在一个无向图中,给定一个起点,从起点开始走遍图中所有点 每条边有边权wi,表示第一次经过该道路时的花费( ...

  4. 『Tarjan算法 无向图的双联通分量』

    无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被 ...

  5. [Tarjan系列] Tarjan算法求无向图的双连通分量

    这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为 ...

  6. Tarjan系列1

    tajan的dfs树系列算法: 求解割点,桥,强连通分量,点双联通分量,边双联通分量: tajan是一个dfs,把一个图变成一个dfs树结构, dfs树结构,本质是通过一个没有任何要求的dfs把图的边 ...

  7. Tarjan系列算法总结(hdu 1827,4612,4587,4005)

    tarjan一直是我看了头大的问题,省选之前还是得好好系统的学习一下.我按照不同的算法在hdu上选题练习了一下,至少还是有了初步的认识.tarjan嘛,就是维护一个dfsnum[]和一个low[],在 ...

  8. 『Tarjan算法 无向图的割点与割边』

    无向图的割点与割边 定义:给定无相连通图\(G=(V,E)\) 若对于\(x \in V\),从图中删去节点\(x\)以及所有与\(x\)关联的边后,\(G\)分裂为两个或以上不连通的子图,则称\(x ...

  9. tarjan系列算法代码小结

    个人使用,可能不是很详细 强联通分量 这里的dfn可以写成low 因为都是在栈中,只要保证该节点的low值不为本身即可 void tarjan(int now) { dfn[now]=low[now] ...

随机推荐

  1. SpringBoot保存数据报错:could not execute statement; SQL [n/a]; constraint [PRIMARY];nested exception is org.hibernate.exception.ConstraintViolationException: could not execute statement

    使用SpringBoot做JAVA开发时,用Repository.save();保存数据的时候遇到了报错: could not execute statement; SQL [n/a]; constr ...

  2. windows 10中的ubuntu子系统安装桌面环境的方法

    windows 10中的ubuntu子系统安装桌面环境的方法 (How to install Ubuntu-desktop in windows 10 Subsystem for Linux) 转载 ...

  3. MySQL、sqlalchemy、pymysql、mysqldb、DBAPI之间关系梳理(终于明白了)

    MySQL.sqlalchemy.pymysql.mysqldb.DBAPI之间关系梳理(终于明白了) python3不再支持mysqldb 请用pymysql和mysql.connector 问题背 ...

  4. windows7安装docker异常:looks like something went wrong in step ‘looking for vboxmanage.exe’

    一.背景 最近准备抽点时间研究下docker,选择在家中的windows系统上安装. 我的系统是windows7,首先安装Docker Toolbox,Docker Toolbox是一个工具集,主要包 ...

  5. 【工具】sqlmap 中文手册 使用教程

    日期:2019-07-28 09:27:27 更新: 作者:Bay0net 介绍:自己翻译了一下,做个备忘. 0x01. 基本信息 官网 sqlmap: automatic SQL injection ...

  6. Spring Security(20)——整合Cas

    整合Cas 目录 1.1           配置登录认证 1.1.1     配置AuthenticationEntryPoint 1.1.2     配置CasAuthenticationFilt ...

  7. socket之IO多路复用

    概述 目的:同一个线程同时处理多个IO请求. 本文以python的select模块来实现socket编程中一个server同时处理多个client请求的问题. web框架tornado就是以此实现多客 ...

  8. Hadoop 部署之 Spark (六)

    目录 一.Spark 是什么 二.Scala的安装(所有节点) 三.Spark 安装(所有节点) 1.下载安装 2.配置 Spark 环境变量 四.Spark 配置(namenode01) 1.配置 ...

  9. unity读取灰度图生成等值线图

    准备灰度图 grayTest.png,放置于Assets下StreamingAssets文件夹中.   在场景中添加RawImage用于显示最后的等值线图.   生成等值线的过程,使用Marching ...

  10. Flutter Window环境运行(VSCode + 单独运行Android 虚拟机)

    官网以及很多网上文章的开发都是基于Android ,因为它能创建不同类型移动设备虚拟机.但个人始终觉得它太庞大,启动慢耗资源,但我们使用Flutter又离不开虚拟机. 经过实践,现在能成功的单独启动移 ...