P3157 [CQOI2011]动态逆序对 (CDQ解决三维偏序问题)
P3157 [CQOI2011]动态逆序对
题目描述
对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数。给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数。
输入格式
输入第一行包含两个整数n和m,即初始元素的个数和删除的元素个数。以下n行每行包含一个1到n之间的正整数,即初始排列。以下m行每行一个正整数,依次为每次删除的元素。
输出格式
输出包含m行,依次为删除每个元素之前,逆序对的个数。
输入输出样例
输入 #1复制
5 4
1
5
3
4
2
5
1
4
2
输出 #1复制
5
2
2
1
样例解释
(1,5,3,4,2)(1,3,4,2)(3,4,2)(3,2)(3)。
说明/提示
N<=100000 M<=50000
思路:
如果不是很懂CDQ的话,建议先看下这个。
CDQ 分治解决和点对有关的问题
然后就是一个很裸的CDQ分治解决三维偏序的问题,
我们知道逆序对可以是放在一个平面2维坐标系中,点在数组中的位置pos为x,点的数值为y
两个点$ (x1,y1)$ , $ (x2,y2)$
如果满足:
$ x1<x2$ 同时 $ y1>y2$
那么这个点对是一个逆序对。
那么CDQ问题的3个维度分别可以是:
时间,x坐标,y坐标。
第一维护直接sort解决,x坐标在归并排序中解决升序,y坐标用树状数组这个数据结构解决。
时间复杂度: $ O(n*log^2(n) )$
代码有一些备注。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
struct node {
int t;
int x;
int y;
node() {}
node(int tt, int xx, int yy)
{
t = tt;
x = xx;
y = yy;
}
bool operator < (const node &bb )const
{
if (x != bb.x) {
return x < bb.x;
} else {
return y < bb.y;
}
}
} a[maxn], b[maxn];
bool cmpx(node &aa, node &bb)
{
return aa.t < bb.t;
}
int n, m;
int pos[maxn];
ll ans[maxn];
ll tree[maxn];
int lowbit(int x)
{
return -x & x;
}
ll ask(int x)
{
ll res = 0ll;
while (x) {
res += tree[x];
x -= lowbit(x);
}
return res;
}
void add(int x, ll val)
{
while (x < maxn) {
tree[x] += val;
x += lowbit(x);
}
}
void clear(int x)
{
while (x < maxn) {
tree[x] = 0ll;
x += lowbit(x);
}
}
void cdq(int l, int r)
{
if (l == r) {
return ;
}
int mid = (l + r) >> 1;
cdq(l, mid);
cdq(mid + 1, r);
int ql = l;
int qr = mid + 1;
// 计算在其左边,数值比其大的贡献
//
// 下面是类似归并排序方式计算贡献
repd(i, l, r) {
if (qr > r || (ql <= mid && a[ql] < a[qr])) {
add(a[ql].y, 1);
b[i] = a[ql++];
} else {
ans[a[qr].t] += ask(n) - ask(a[qr].y );
b[i] = a[qr++];
}
}
repd(i, l, mid) {
clear(a[i].y);
}
repd(i, l, r) {
a[i] = b[i];
}
// 计算在其右边,数值比其小的贡献
// 因为上面已经归并排序过了,所以这个区间中是以x为升序的。
for (int i = r; i >= l; --i) {
if (a[i].t <= mid) {
add(a[i].y, 1);
} else {
ans[a[i].t] += ask(a[i].y);
}
}
repd(i, l, r) {
clear(a[i].y);
}
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
du2(n, m);
repd(i, 1, n) {
a[i].x = i;
du1(a[i].y);
pos[a[i].y] = i;
}
int tm = n;
repd(i, 1, m) {
int x;
du1(x);
a[pos[x]].t = tm--;
}
repd(i, 1, n) {
if (!a[i].t) {
a[i].t = tm--;
}
}
sort(a + 1, a + 1 + n, cmpx);// 按照time排序,确保时间维度time是升序的。
cdq(1, n);
repd(i, 1, n) {
ans[i] += ans[i - 1];
}
for (int i = n; i >= n - m + 1; --i) {
printf("%lld\n", ans[i]);
}
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
P3157 [CQOI2011]动态逆序对 (CDQ解决三维偏序问题)的更多相关文章
- 洛谷 P3157 [CQOI2011]动态逆序对 | CDQ分治
题目:https://www.luogu.org/problemnew/show/3157 题解: 1.对于静态的逆序对可以用树状数组做 2.我们为了方便可以把删除当成增加,可以化动为静 3.找到三维 ...
- LUOGU P3157 [CQOI2011]动态逆序对(CDQ 分治)
传送门 解题思路 cdq分治,将位置看做一维,修改时间看做一维,权值看做一维,然后就转化成了三维偏序,用排序+cdq+树状数组.注意算删除贡献时要做两次cdq,分别算对前面和后面的贡献. #inclu ...
- P3157 [CQOI2011]动态逆序对 CDQ分治
一道CDQ分治模板题简单来说,这道题是三维数点对于离线的二维数点,我们再熟悉不过:利用坐标的单调递增性,先按更坐标排序,再按纵坐标排序更新和查询时都直接调用纵坐标.实际上,我们是通过排序将二维中的一维 ...
- 洛谷 P3157 [CQOI2011]动态逆序对 解题报告
P3157 [CQOI2011]动态逆序对 题目描述 对于序列\(A\),它的逆序对数定义为满足\(i<j\),且\(A_i>A_j\)的数对\((i,j)\)的个数.给\(1\)到\(n ...
- P3157 [CQOI2011]动态逆序对(树状数组套线段树)
P3157 [CQOI2011]动态逆序对 树状数组套线段树 静态逆序对咋做?树状数组(别管归并QWQ) 然鹅动态的咋做? 我们考虑每次删除一个元素. 减去的就是与这个元素有关的逆序对数,介个可以预处 ...
- P3157 [CQOI2011]动态逆序对
P3157 [CQOI2011]动态逆序对 https://www.luogu.org/problemnew/show/P3157 题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai&g ...
- [BZOJ3295][Cqoi2011]动态逆序对 CDQ分治&树套树
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j,且 ...
- BZOJ3295 [Cqoi2011]动态逆序对 —— CDQ分治
题目链接:https://vjudge.net/problem/HYSBZ-3295 3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 1 ...
- bzoj3295 [Cqoi2011]动态逆序对 cdq+树状数组
[bzoj3295][Cqoi2011]动态逆序对 2014年6月17日4,7954 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数. ...
随机推荐
- 如何在ubuntu下重建被grub覆盖的win10引导区?
如何在ubuntu下重建被grub覆盖的win10引导区? 1.修改grub配置文件: sudo vi /etc/default/grub 2.设置:GRUB_DEFAULT = 2 3.更新配置文件 ...
- mysql 监听ip地址修改
如何修改MySQL监听IP地址 Mysql默认在本地环路地址127.0.0.1的3306端口监听,要使用其它IP地址需要修改配置文件. 1.编辑/etc/my.cnf 在[mysqld]节中增加下面一 ...
- Java—System类入门学习
第三阶段 JAVA常见对象的学习 System类 System类包含一些有用的字段和方法,他不能被实例化 //用于垃圾回收 public static void gc() //终止正在运行的java虚 ...
- ES-实战
一.环境准备 操作系统:mac 依赖的软件:JDK1.8.Postman.NodeJs6.0以上.Maven.Idea ES下载:Elastic官方网站: http://www.elastic.co ...
- 聊聊BIO、NIO与AIO的区别
题目:说一下BIO/AIO/NIO 有什么区别?及异步模式的用途和意义? 1F 说一说I/O首先来说一下什么是I/O? 在计算机系统中I/O就是输入(Input)和输出(Output)的意思,针对不同 ...
- css 颜色自动变化 炫彩
.layui-icon-login-qq:hover{ color:rgb(0, 156, 255); transition: 0.5s; animation:change 10s linear 0s ...
- python time模块认识
time 模块 -- 时间获取和转换 time 模块提供各种时间相关的功能 在python中, 与时间处理有关的模块包括: time, datatime 以及 calendar 必要说明!: 虽然这个 ...
- easyui-combobox多选时的小问题
easyui-combobox可支持多选,仅需将multiple值设为true即可 $('#combobox').combobox({ url:url, multiple:true, separato ...
- c#本地文件配置xml
/// <summary> /// 处理xml文件 /// </summary> public class HandelXmlFile { private string _co ...
- mvc控制器返回操作结果封装
实体类 public class AjaxResult { /// <summary> /// 获取 Ajax操作结果类型 /// </summary> public Resu ...