[ML] Feature Selectors
SparkML中关于特征的算法可分为:Extractors(特征提取)、Transformers(特征转换)、Selectors(特征选择)三部分。
Ref: SparkML中三种特征选择算法(VectorSlicer/RFormula/ChiSqSelector)
一、代码示范
VectorSlicer 只是根据index而“手动指定特征”的手段,不是特征选择的依据。
RFormula 也只是根据column而“手动指定特征”的手段,不是特征选择的依据。
VectorSlicer
from pyspark.ml.feature import VectorSlicer
from pyspark.ml.linalg import Vectors
from pyspark.sql.types import Row df = spark.createDataFrame([
Row(userFeatures=Vectors.sparse(3, {0: -2.0, 1: 2.3})),
Row(userFeatures=Vectors.dense([-2.0, 2.3, 0.0]))]) df.show() +--------------------+
| userFeatures|
+--------------------+
|(3,[0,1],[-2.0,2.3])|
| [-2.0,2.3,0.0]|
+--------------------+
slicer = VectorSlicer(inputCol="userFeatures", outputCol="features", indices=[1])
output = slicer.transform(df) output.select("userFeatures", "features").show() +--------------------+-------------+
| userFeatures| features|
+--------------------+-------------+
|(3,[0,1],[-2.0,2.3])|(1,[0],[2.3])|
| [-2.0,2.3,0.0]| [2.3]|
+--------------------+-------------+ RFormula
from pyspark.ml.feature import RFormula dataset = spark.createDataFrame(
[(7, "US", 18, 1.0),
(8, "CA", 12, 0.0),
(9, "NZ", 15, 0.0)],
["id", "country", "hour", "clicked"]) formula = RFormula(
formula="clicked ~ country + hour", # 指定使用两个特征,country特征会自动采用one hot编码。
featuresCol="features",
labelCol="label") output = formula.fit(dataset).transform(dataset)
output.select("features", "label").show() +--------------+-----+
| features|label|
+--------------+-----+
|[0.0,0.0,18.0]| 1.0|
|[0.0,1.0,12.0]| 0.0|
|[1.0,0.0,15.0]| 0.0|
+--------------+-----+ ChiSqSelector
from pyspark.ml.feature import ChiSqSelector
from pyspark.ml.linalg import Vectors df = spark.createDataFrame([
(7, Vectors.dense([0.0, 0.0, 18.0, 1.0]), 1.0,),
(8, Vectors.dense([0.0, 1.0, 12.0, 0.0]), 0.0,),
(9, Vectors.dense([1.0, 0.0, 15.0, 0.1]), 0.0,)], ["id", "features", "clicked"]) selector = ChiSqSelector(numTopFeatures=1, featuresCol="features",
outputCol="selectedFeatures", labelCol="clicked") result = selector.fit(df).transform(df) print("ChiSqSelector output with top %d features selected" % selector.getNumTopFeatures())
result.show() ChiSqSelector output with top 1 features selected
+---+------------------+-------+----------------+
| id| features|clicked|selectedFeatures|
+---+------------------+-------+----------------+
| 7|[0.0,0.0,18.0,1.0]| 1.0| [18.0]|
| 8|[0.0,1.0,12.0,0.0]| 0.0| [12.0]|
| 9|[1.0,0.0,15.0,0.1]| 0.0| [15.0]|
+---+------------------+-------+----------------+
二、实践心得
参考:[Feature] Feature selection
Outline
3.1 Filter
3.1.1 方差选择法
3.1.2 相关系数法
3.1.3 卡方检验 # <---- ChiSqSelector
3.1.4 互信息法
3.2 Wrapper
3.2.1 递归特征消除法
3.3 Embedded
3.3.1 基于惩罚项的特征选择法
3.3.2 基于树模型的特征选择法
相关系数
fraud_pd.corr('balance', 'numTrans') n_numerical = len(numerical)
corr = []
for i in range(0, n_numerical):
temp = [None] * i for j in range(i, n_numerical):
temp.append(fraud_pd.corr(numerical[i], numerical[j]))
corr.append(temp) print(corr)
Output:
[[1.0, 0.00044, 0.00027],
[None, 1.0, -0.00028],
[None, None, 1.0]]
三、Embedded
Ref: [Feature] Feature selection - Embedded topic
问题,spark.ml可以lasso线性回归么?2.4.4貌似没有,但mllib里有,功能完善度不是很满意。
classification (SVMs, logistic regression)
linear regression (least squares, Lasso, ridge)
后者采样后,使用sklearn处理画出"轨迹图"。
使用Spark SQL在DataFrame中采样构成子数据集的过程。
End.
[ML] Feature Selectors的更多相关文章
- [ML] Feature Transformers
方案选择可参考:[Scikit-learn] 4.3 Preprocessing data 代码示范可参考:[ML] Pyspark ML tutorial for beginners 本篇涉及:Fe ...
- Spark.ML之PipeLine学习笔记
地址: http://spark.apache.org/docs/2.0.0/ml-pipeline.html Spark PipeLine 是基于DataFrames的高层的API,可以方便用户 ...
- Add AI feature to Xamarin.Forms app
Now, AI is one of important technologies.Almost all platforms have API sets of AI. Following list is ...
- spark ML pipeline 学习
一.pipeline 一个典型的机器学习过程从数据收集开始,要经历多个步骤,才能得到需要的输出.这非常类似于流水线式工作,即通常会包含源数据ETL(抽取.转化.加载),数据预处理,指标提取,模型训练与 ...
- Spark ML机器学习
Spark提供了常用机器学习算法的实现, 封装于spark.ml和spark.mllib中. spark.mllib是基于RDD的机器学习库, spark.ml是基于DataFrame的机器学习库. ...
- Spark ML 几种 归一化(规范化)方法总结
规范化,有关之前都是用 python写的, 偶然要用scala 进行写, 看到这位大神写的, 那个网页也不错,那个连接图做的还蛮不错的,那天也将自己的博客弄一下那个插件. 本文来源 原文地址:htt ...
- Spark2 ML包之决策树分类Decision tree classifier详细解说
所用数据源,请参考本人博客http://www.cnblogs.com/wwxbi/p/6063613.html 1.导入包 import org.apache.spark.sql.SparkSess ...
- 基于Spark ML的Titanic Challenge (Top 6%)
下面代码按照之前参加Kaggle的python代码改写,只完成了模型的训练过程,还需要对test集的数据进行转换和对test集进行预测. scala 2.11.12 spark 2.2.2 packa ...
- ML学习笔记之TF-IDF原理及使用
0x00 什么是TF-IDF TF-IDF(Term Frequency-Inverse Document Frequency, 词频-逆文件频率). # 是一种用于资讯检索与资讯探勘的常用加权技术. ...
随机推荐
- TouchGFX版本
TouchGFX 4.12.3版本 本文概述了TouchGFX 4.12.3版本,其总体功能以及如何与CubeMX和CubeIDE集成. 总览 有关4.12.3新增功能的一般概述,请查看发行版中的ch ...
- 八:MVC初始化数据库
生成数据库策略: CreateDatabaseIfNotExists:方法会在没有数据库时创建一个,这是默认行为. DropCreateDatabaseIfModelChanges:如果我们在在模型改 ...
- Linux部署Django:报错 nohup: ignoring input and appending output to ‘nohup.out’
一.部署 Django 到远程 Linux 服务器 利用 xshell 通过 ssh 连接到 Linux服务器,常规的启动命令是 python3 manage.py runserver 但是,关闭 x ...
- 【转载】解决繁体、日文游戏乱码的五种方法 转载自:http://tieba.baidu.com/p/488627981
方法1:转换区域 开始——设置——控制面板——区域和语言选项——分别选择“高级”和“区域选项”标签——在其下拉框中都选择“日语”(或“日本”)(选项有点多,慢慢找)——重启后即可生效. *某影注:日语 ...
- bzoj3993: [SDOI2015]星际战争(二分+最大流)
题目描述 3333年,在银河系的某星球上,X军团和Y军团正在激烈地作战. 在战斗的某一阶段,Y军团一共派遣了N个巨型机器人进攻X军团的阵地,其中第i个巨型机器人的装甲值为Ai.当一个巨型机器人的装甲值 ...
- BZOJ 3630: [JLOI2014]镜面通道 (网络流 +计算几何)
水能流过的地方光都能达到 呵呵.jpg 那就是裸的最小割(割开上边界和下边界)了- 判矩形和圆相交的时候就用圆心对矩形求一次点到矩形的最近距离(类似KD树的预估函数). CODE #include & ...
- 【leetcode】1290. Convert Binary Number in a Linked List to Integer
题目如下: Given head which is a reference node to a singly-linked list. The value of each node in the li ...
- 【转载】BERT:用于语义理解的深度双向预训练转换器(Transformer)
BERT:用于语义理解的深度双向预训练转换器(Transformer) 鉴于最近BERT在人工智能领域特别火,但相关中文资料却很少,因此将BERT论文理论部分(1-3节)翻译成中文以方便大家后续研 ...
- kubernetes 的configMap和sercet配置信息
简介: 启动pod,pod启动时可以将configMap资源关联到当前pod上来,从中读一个数据c传递给pod内的容器的一个变量.任然是变量注入的方式来给容器传配置信息. 把每一个configMap当 ...
- Codeforces 1246D/1225F Tree Factory (构造)
题目链接 https://codeforces.com/contest/1246/problem/D 题解 首先考虑答案的下界是\(n-1-dep\) (\(dep\)为树的深度,即任何点到根的最大边 ...