【LOJ】#3089. 「BJOI2019」奥术神杖
LOJ#3089. 「BJOI2019」奥术神杖
看见乘积就取log,开根号就是除法,很容易发现这就是一道01分数规划。。
然后建出AC自动机直接dp就行,判断条件要设成>0,因为起点的值是1,取完ln后是0
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 2005
#define ba 47
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,M,cur;
int nxt[MAXN][10],pre[MAXN],Ncnt;
char T[MAXN],s[MAXN],ans[MAXN];
db val[MAXN];
vector<db> ed[MAXN];
db dp[2][MAXN];
int from[MAXN][MAXN];
char c[MAXN][MAXN];
void Insert(db v) {
int l = strlen(s + 1);int p = 1;
for(int i = 1 ; i <= l ; ++i) {
if(!nxt[p][s[i] - '0']) nxt[p][s[i] - '0'] = ++Ncnt;
p = nxt[p][s[i] - '0'];
}
ed[p].pb(v);
}
queue<int> Q;
void build_ACAM() {
for(int i = 0 ; i <= 9 ; ++i) nxt[0][i] = 1;
pre[1] = 0;
Q.push(1);
while(!Q.empty()) {
int u = Q.front();Q.pop();
ed[u].insert(ed[u].end(),ed[pre[u]].begin(),ed[pre[u]].end());
for(int i = 0 ; i <= 9 ; ++i) {
int v = nxt[u][i];
if(v) {
pre[v] = nxt[pre[u]][i];
Q.push(v);
}
else nxt[u][i] = nxt[pre[u]][i];
}
}
}
bool Calc(db mid) {
memset(val,0,sizeof(val));
for(int i = 1 ; i <= Ncnt ; ++i) {
for(auto v : ed[i]) val[i] += v - mid;
}
for(int i = 1 ; i <= Ncnt ; ++i) dp[0][i] = dp[1][i] = -1e9;
dp[0][1] = 0;cur = 0;
from[0][1] = 0;
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= Ncnt ; ++j) dp[cur ^ 1][j] = -1e9;
for(int j = 1 ; j <= Ncnt ; ++j) {
if(dp[cur][j] <= -1e9) continue;
if(T[i] == '.') {
for(int h = 0 ; h <= 9 ; ++h) {
if(dp[cur ^ 1][nxt[j][h]] < dp[cur][j] + val[nxt[j][h]]) {
dp[cur ^ 1][nxt[j][h]] = dp[cur][j] + val[nxt[j][h]];
from[i][nxt[j][h]] = j;
c[i][nxt[j][h]] = h + '0';
}
}
}
else {
int h = T[i] - '0';
if(dp[cur ^ 1][nxt[j][h]] < dp[cur][j] + val[nxt[j][h]]) {
dp[cur ^ 1][nxt[j][h]] = dp[cur][j] + val[nxt[j][h]];
from[i][nxt[j][h]] = j;
c[i][nxt[j][h]] = h + '0';
}
}
}
cur ^= 1;
}
for(int i = 1 ; i <= Ncnt ; ++i) {
if(dp[cur][i] > 0) return true;
}
return false;
}
void Solve() {
read(N);read(M);
scanf("%s",T + 1);
Ncnt = 1;
int v;
for(int i = 1 ; i <= M ; ++i) {
scanf("%s",s + 1);read(v);
Insert(log(v));
}
build_ACAM();
int cnt = 50;
db l = 0,r = 21;
while(cnt--) {
db mid = (l + r) / 2;
if(Calc(mid)) l = mid;
else r = mid;
}
Calc(l);
int st = 0;
for(int i = 1 ; i <= Ncnt ; ++i) {
if(dp[cur][i] > 0) st = i;
}
for(int i = N ; i >= 1 ; --i) {
int pre = from[i][st];
ans[i] = c[i][st];
st = pre;
}
for(int i = 1 ; i <= N ; ++i) {
putchar(ans[i]);
}
enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}
【LOJ】#3089. 「BJOI2019」奥术神杖的更多相关文章
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划
题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...
- LOJ 3089: 洛谷 P5319: 「BJOI2019」奥术神杖
题目传送门:LOJ #3089. 题意简述: 有一个长度为 \(n\) 的母串,其中某些位置已固定,另一些位置可以任意填. 同时给定 \(m\) 个小串,第 \(i\) 个为 \(S_i\),所有位置 ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- loj 3090 「BJOI2019」勘破神机 - 数学
题目传送门 传送门 题目大意 设$F_{n}$表示用$1\times 2$的骨牌填$2\times n$的网格的方案数,设$G_{n}$$表示用$1\times 2$的骨牌填$3\times n$的网 ...
- LOJ 3094 「BJOI2019」删数——角标偏移的线段树
题目:https://loj.ac/problem/3094 弱化版是 AGC017C . 用线段树维护那个题里的序列即可. 对应关系大概是: 真实值的范围是 [ 1-m , n+m ] :考虑设偏移 ...
- LOJ 3090 「BJOI2019」勘破神机——斯特林数+递推式求通项+扩域
题目:https://loj.ac/problem/3090 题解:https://www.luogu.org/blog/rqy/solution-p5320 1.用斯特林数把下降幂化为普通的幂次求和 ...
- LOJ 3093 「BJOI2019」光线——数学+思路
题目:https://loj.ac/problem/3093 考虑经过种种反射,最终射下去的光线总和.往下的光线就是这个总和 * a[ i ] . 比如只有两层的话,设射到第二层的光线是 lst ,那 ...
- LOJ 3092 「BJOI2019」排兵布阵 ——DP
题目:https://loj.ac/problem/3092 同一个人的不同城堡之间没有什么联系,只是和<=m.所以对每个城堡的 s 个值排序,做一个 f[ i ][ j ] 表示第 i 个城堡 ...
随机推荐
- BERT中文 添加 early_stop
Step1:建一个hook early_stopping_hook = tf.contrib.estimator.stop_if_no_decrease_hook( estimator=estimat ...
- Codeforces 576D Flights for Regular Customers (图论、矩阵乘法、Bitset)
题目链接 http://codeforces.com/contest/576/problem/D 题解 把边按\(t_i\)从小到大排序后枚举\(i\), 求出按前\((i-1)\)条边走\(t_i\ ...
- Linux 删除文件夹和文件的命令(强制删除包括非空文件)
linux删除目录很简单,很多人还是习惯用rmdir,不过一旦目录非空,就陷入深深的苦恼之中,现在使用rm -rf命令即可.直接rm就可以了,不过要加两个参数-rf 即:rm -rf 目录名字-r 就 ...
- 判定Java程序员等级,HashMap就够了
JDK1.8 HashMap源码分析 用到的符号: ^异运算:两个操作数相同,结果是;两个操作数不同,结果是1. &按位与:两个操作数都是1,结果才是1. 一.HashMap概述 在JDK1 ...
- openfalcon架构及相关服务配置详解(转)
一:openfalcon组件 1.falcon-agent 数据采集组件 agent内置了一个http接口,会自动采集预先定义的各种采集项,每隔60秒,push到transfer. 2.transfe ...
- 什么叫Closed-form闭式解
转自百度知道 与数值解对应的是解析解 闭式解closed form solution)也叫解析解(analytical solution),就是一些严格的公式,给出任意的自变量就可以求出其因变量,也就 ...
- macos npm + node 环境启动问题排查
MacOS安装npm全局包的权限问题 解决办法:修改npm包所安装目录的权限:sudo chown -R $USER /usr/local 然后输入密码就可以了 deMBP:~ $ sudo ch ...
- 实验吧中围在栅栏中的爱-------writeup
涉及知识点:栅栏密码解密.摩斯密码解密.替代密码解密 题目 可以看到下面一行东西,明显是一串摩斯密码,利用CTFCrakTools将密文解密 得到另一串密码kiqlwtfcqgnsoo 那么我们尝试着 ...
- C# 批处理制作静默安装程序包
使用批处理+WinRAR制作静默安装程序包 @echo 安装完窗口会自动关闭!!! @echo off start /wait Lync.exe /Install /Silent start /wai ...
- 自己的框架引入smarty的问题
这段时间自己学着写PHP的MVC框架,想把Smarty 作为view类加载, 可是自动加载它的时候就出错. 无论改文件名,还是改变路径,都无法解决问题, 我搜索一下相关问题,发现是自动加载Smarty ...