题意

给定一个 $n$ 个整数的数列,从中至多选取 $k$ 个上升子序列(一个元素最多被选一次),使得选取的元素和最大。

分析

考虑这个问题和经典网络流问题“最长不下降子序列”相似,我们考虑对这个建图并用网络流解决。因为求得费用和,则使用费用流做法。

具体建图见代码,主要考虑拆点和建立超级源点和超级汇点。

(然后SPFA版的会超时,换成Dijkstra版的

#include<bits/stdc++.h>
using namespace std;
#define il inline typedef long long ll;
const int INF = 0x3f3f3f3f;
const int maxn = + ;
int n, k, a[maxn]; struct edge {
int to, capacity, cost, rev;
edge() {}
edge(int to, int _capacity, int _cost, int _rev) :to(to), capacity(_capacity), cost(_cost), rev(_rev) {}
};
struct Min_Cost_Max_Flow {
int V, H[maxn + ], dis[maxn + ], PreV[maxn + ], PreE[maxn + ];
vector<edge> G[maxn + ];
//调用前初始化
void Init(int n) {
V = n;
for (int i = ; i <= V; ++i)G[i].clear();
}
//加边
void Add_Edge(int from, int to, int cap, int cost) {
G[from].push_back(edge(to, cap, cost, G[to].size()));
G[to].push_back(edge(from, , -cost, G[from].size() - ));
}
//flow是自己传进去的变量,就是最后的最大流,返回的是最小费用
int Min_cost_max_flow(int s, int t, int f, int& flow) {
int res = ; fill(H, H + + V, );
while (f) {
priority_queue <pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>> > q;
fill(dis, dis + + V, INF);
dis[s] = ; q.push(pair<int, int>(, s));
while (!q.empty()) {
pair<int, int> now = q.top(); q.pop();
int v = now.second;
if (dis[v] < now.first)continue;
for (int i = ; i < G[v].size(); ++i) {
edge& e = G[v][i];
if (e.capacity > && dis[e.to] > dis[v] + e.cost + H[v] - H[e.to]) {
dis[e.to] = dis[v] + e.cost + H[v] - H[e.to];
PreV[e.to] = v;
PreE[e.to] = i;
q.push(pair<int, int>(dis[e.to], e.to));
}
}
}
if (dis[t] == INF)break;
for (int i = ; i <= V; ++i)H[i] += dis[i];
int d = f;
for (int v = t; v != s; v = PreV[v])d = min(d, G[PreV[v]][PreE[v]].capacity);
f -= d; flow += d; res += d*H[t];
for (int v = t; v != s; v = PreV[v]) {
edge& e = G[PreV[v]][PreE[v]];
e.capacity -= d;
G[v][e.rev].capacity += d;
}
}
return res;
}
int Max_cost_max_flow(int s, int t, int f, int& flow) {
int res = ;
fill(H, H + + V, );
while (f) {
priority_queue <pair<int, int>> q;
fill(dis, dis + + V, -INF);
dis[s] = ;
q.push(pair<int, int>(, s));
while (!q.empty()) {
pair<int, int> now = q.top(); q.pop();
int v = now.second;
if (dis[v] > now.first)continue;
for (int i = ; i < G[v].size(); ++i) {
edge& e = G[v][i];
if (e.capacity > && dis[e.to] < dis[v] + e.cost + H[v] - H[e.to]) {
dis[e.to] = dis[v] + e.cost + H[v] - H[e.to];
PreV[e.to] = v;
PreE[e.to] = i;
q.push(pair<int, int>(dis[e.to], e.to));
}
}
}
if (dis[t] == -INF)break;
for (int i = ; i <= V; ++i)H[i] += dis[i];
int d = f;
for (int v = t; v != s; v = PreV[v])d = min(d, G[PreV[v]][PreE[v]].capacity);
f -= d; flow += d;
res += d*H[t];
for (int v = t; v != s; v = PreV[v]) {
edge& e = G[PreV[v]][PreE[v]];
e.capacity -= d;
G[v][e.rev].capacity += d;
}
}
return res;
}
}mcmf; void solve()
{
mcmf.Init(*n+);
for(int i = ;i <= n;i++)
{
mcmf.Add_Edge(i, i+n, , -a[i]);
for(int j = i+;j <= n;j++)
{
if(a[j] >= a[i])
{
mcmf.Add_Edge(i+n, j, , ); //右边每一个大于的都要连边
//break;
}
}
}
mcmf.Add_Edge(*n+, *n+, k, );
for(int i = ;i <= n;i++) mcmf.Add_Edge(*n+, i, , ); //建立超级源点2n+1
for(int i = ;i <= n;i++) mcmf.Add_Edge(i+n, *n+, , ); //建立超级汇点2n+2
int flow = ;
int ans = mcmf.Min_cost_max_flow(*n+, *n+, INF, flow);
printf("%d\n", -ans);
} int main()
{
// freopen("multi.in", "r", stdin);
// freopen("out.txt", "w", stdout);
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &k);
for(int i = ;i <= n;i++) scanf("%d", &a[i]);
solve();
}
}

2019HDU多校第三场 K subsequence——最小费用最大流的更多相关文章

  1. hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙

    /** 题目:hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4106 ...

  2. 2019HDU多校第三场F Fansblog——威尔逊定理&&素数密度

    题意 给定一个整数 $P$($10^9 \leq p\leq 1^{14}$),设其前一个质数为 $Q$,求 $Q!  \ \% P$. 分析 暴力...说不定好的板子能过. 根据威尔逊定理,如果 $ ...

  3. 2019HDU多校第三场 Distribution of books 二分 + DP

    题意:给你一个序列,你可以选择序列的一个前缀,把前缀分成k个连续的部分,要求这k个部分的区间和的最大值尽量的小,问这个最小的最大值是多少? 思路:首先看到最大值的最小值,容易想到二分.对于每个二分值m ...

  4. [2019HDU多校第三场][HDU 6603][A. Azshara's deep sea]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6603 题目大意:给出一个凸包,凸包内有若干个圆,要求画尽可能多的对角线使得他们两两不在凸包内相交且不与 ...

  5. 2019Hdu多校第三场:1007 Find the answer(multiset 解法)

    原题链接: Find the answer c++中,multiset是库中一个非常有用的类型,它可以看成一个序列,插入一个数,删除一个数都能够在O(logn)的时间内完成,而且他能时刻保证序列中的数 ...

  6. 2018 HDU多校第三场赛后补题

    2018 HDU多校第三场赛后补题 从易到难来写吧,其中题意有些直接摘了Claris的,数据范围是就不标了. 如果需要可以去hdu题库里找.题号是6319 - 6331. L. Visual Cube ...

  7. 牛客多校第三场 F Planting Trees

    牛客多校第三场 F Planting Trees 题意: 求矩阵内最大值减最小值大于k的最大子矩阵的面积 题解: 矩阵压缩的技巧 因为对于我们有用的信息只有这个矩阵内的最大值和最小值 所以我们可以将一 ...

  8. 2020牛客多校第八场K题

    __int128(例题:2020牛客多校第八场K题) 题意: 有n道菜,第i道菜的利润为\(a_i\),且有\(b_i\)盘.你要按照下列要求给顾客上菜. 1.每位顾客至少有一道菜 2.给顾客上菜时, ...

  9. 牛客多校第三场 G Removing Stones(分治+线段树)

    牛客多校第三场 G Removing Stones(分治+线段树) 题意: 给你n个数,问你有多少个长度不小于2的连续子序列,使得其中最大元素不大于所有元素和的一半 题解: 分治+线段树 线段树维护最 ...

随机推荐

  1. 六种Socket I/O模型幽默讲解

    老陈有一个在外地工作的女儿,不能经常回来,老陈和她通过信件联系.他们的信会被邮递员投递到他们的信箱里.这和Socket模型非常类似.下面就以此为例讲解Socket I/O模型. 零:阻塞模型 老陈非常 ...

  2. RocketMQ之六:RocketMQ消息存储

    一.RocketMQ的消息存储基本介绍 先看一张图: 1.Commit log存储消息实体.顺序写,随机读.2.Message queue存储消息的偏移量.读消息先读message queue,根据偏 ...

  3. Spring Boot系列教程十三:Spring boot集成Sentinel Redis

    前言 上一篇文章介绍了spring boot集成单点的redis,然而实际生产环境使用单点的redis风险很高,一旦宕机整个服务将无法使用,这篇文章介绍如何使用基于sentinel的redis高可用方 ...

  4. zabbix硬件监控以及服务

    大家好今天给大家带来zabbix3.4.8监控主机,那么最近由于我个人的关系.没有及时的更新文章所以,很抱歉那么今天我分享的内容是zabbix3.4.8监控服务器.本章的具体监控服务器如下: 服务器的 ...

  5. 十、LCD的framebuffer设备驱动

    在读者学习本章以及后续LCD相关章节之前,最好拥有LCD裸机基础,可以参考:LCD编程. 在内核中,表示LCD使用的是framebuffer(帧缓冲,简写为fb),其内容对应于屏幕上的界面显示.修改f ...

  6. Ubuntu16.04 换源(或者404 Not Found问题)

    当执行sudo apt-get update或者sudo apt-get install命令时,出现以下两个问题: “apt-get 404 Not Found Package Repository ...

  7. Pod——状态和生命周期管理及探针和资源限制

    一.什么是Podkubernetes中的一切都可以理解为是一种资源对象,pod,rc,service,都可以理解是 一种资源对象.pod的组成示意图如下,由一个叫”pause“的根容器,加上一个或多个 ...

  8. List 集合的常用方法总结

    @org.junit.Test public void testListToCompare() { List<String> list1 = new ArrayList<>() ...

  9. CUDA 笔记

    名词解释 SM :Streaming Multiprocessor    而 Block 大致就是对应到 SM     所有的blocks 按照流水线被送到6个SM中进行计算 在 Compute Ca ...

  10. 基于【 centos7】五 || GitLab环境搭建

    一.基于Docker部署GitLab环境搭建 1.下载镜像 docker pull beginor/gitlab-ce:11.0.1-ce.0 2.创建GitLab 的配置 (etc) . 日志 (l ...