思路:数位DP

提交:\(2\)次

错因:进行下一层\(dfs\)时的状态转移出错

题解:

还是记忆化搜索就行,但是要用\(map\)记忆化。

见代码

#include<cstdio>
#include<iostream>
#include<map>
#define R register int
#define ll long long
using namespace std;
namespace Luitaryi {
template<class I> inline I g(I& x) { x=0;
register I f=1; register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*=f;
} ll n,l,r,num[19],len,stk[19],top;
map<ll,ll> f[20];
inline void print() {
for(R i=1;i<=top;++i) cout<<stk[i];
}
inline ll dfs(int l,bool ul,bool ck,ll ml) {
if(l==0) {return ml<=n&&ml>0?1:0;}
if(!ul&&!ck&&f[l].count(ml)) return f[l][ml];
R mx=ul?num[l]:9; register ll cnt=0;
for(R i=0;i<=mx;++i)
if(ck&&i==0) stk[++top]=i,cnt+=dfs(l-1,ul&&i==mx,true,0),--top;//一直是前导零
else if(ck&&i!=0) stk[++top]=i,cnt+=dfs(l-1,ul&&i==mx,false,i),--top;//第一次不是前导零
else if(!ck&&i!=0) stk[++top]=i,cnt+=dfs(l-1,ul&&i==mx,false,ml*i),--top;//之前有不是前导零的时刻
//注意到i=0且不是前导零时就不必向下dfs了
return f[l][ml]=cnt;
}
inline ll solve(ll x) { len=0;
for(R i=1;i<=19;++i) f[i].clear();
while(x) num[++len]=x%10,x/=10;
return dfs(len,1,1,0);
}
inline void main() {g(n),g(l),g(r); printf("%lld\n",solve(r-1)-solve(l-1));}
} signed main() {Luitaryi::main(); return 0;}

2019.08.16

84

BZOJ 3679 数字之积 数位DP的更多相关文章

  1. bzoj 3679: 数字之积

    Description 一个数x各个数位上的数之积记为\(f(x)\) 求[L,R)中满足\(0<f(x)<=n\)的数的个数 solution 最后\(f(x)\)可以拆分成2,3,5, ...

  2. BZOJ3679: 数字之积(数位dp)

    题意 题目链接 Sol 推什么结论啊. 直接大力dp,$f[i][j]$表示第$i$位,乘积为$j$,第二维直接开map 能赢! /* */ #include<iostream> #inc ...

  3. BZOJ_1833_[ZJOI2010]count 数字计数_数位DP

    BZOJ_1833_[ZJOI2010]count 数字计数_数位DP 题意: 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 分析: 数位DP f[i][ ...

  4. [BZOJ 1833] [ZJOI2010] count 数字计数 【数位DP】

    题目链接:BZOJ - 1833 题目分析 数位DP .. 用 f[i][j][k] 表示第 i 位是 j 的 i 位数共有多少个数码 k . 然后差分询问...Get()中注意一下,如果固定了第 i ...

  5. 【BZOJ】1833: [ZJOI2010] count 数字计数(数位dp)

    题目 传送门:QWQ 分析 蒟蒻不会数位dp,又是现学的 用$ dp[i][j][k] $ 表示表示长度为i开头j的所有数字中k的个数 然后预处理出这个数组,再计算答案 代码 #include < ...

  6. bzoj 1833: [ZJOI2010]count 数字计数【数位dp】

    非典型数位dp 先预处理出f[i][j][k]表示从后往前第i位为j时k的个数,然后把答案转换为ans(r)-ans(l-1),用预处理出的f数组dp出f即可(可能也不是dp吧--) #include ...

  7. bzoj 3131 [Sdoi2013]淘金(数位DP+优先队列)

    Description 小Z在玩一个叫做<淘金者>的游戏.游戏的世界是一个二维坐标.X轴.Y轴坐标范围均为1..N.初始的时候,所有的整数坐标点上均有一块金子,共N*N块.    一阵风吹 ...

  8. bzoj 3131 [Sdoi2013]淘金(数位dp)

    题目描述 小Z在玩一个叫做<淘金者>的游戏.游戏的世界是一个二维坐标.X轴.Y轴坐标范围均为1..N.初始的时候,所有的整数坐标点上均有一块金子,共N*N块. 一阵风吹过,金子的位置发生了 ...

  9. 【BZOJ3679】数字之积 DFS+DP

    [BZOJ3679]数字之积 Description 一个数x各个数位上的数之积记为f(x) <不含前导零>求[L,R)中满足0<f(x)<=n的数的个数 Input 第一行一 ...

随机推荐

  1. 基于laravel框架构建最小内容管理系统

    校园失物招领平台开发 --基于laravel框架构建最小内容管理系统 摘要 ​ 针对目前大学校园人口密度大.人群活动频繁.师生学习生活等物品容易遗失的基本现状,在分析传统失物招领过程中的工作效率低下. ...

  2. k8s系列0--Kubernetes基础知识

    Kubernetes介绍 参考:Kubernetes核心组件解析 Pod是k8s的最小调度单元 每个pod有独立的IP,但是pod的IP是不可靠的,重新调度pod就会改变IP,service概念就是为 ...

  3. Admui相关第三方插件

    ace 版本:1.2.3au 官网:https://github.com/ajaxorg/ace-builds/ 许可:BSD 依赖:无 DataAPI:data-pulgin="ace&q ...

  4. poj 3069 继续弱鸡的贪心

    题意:给出指路石的范围,问最小需要几个指路石可以覆盖所有的军队. 题解:排序一遍,然后扫出起始区间和终止区间,就可以求出最小的覆盖数了 ac代码: #include <iostream> ...

  5. 在论坛中出现的比较难的sql问题:5(row_number函数 分页、随机返回数据)

    原文:在论坛中出现的比较难的sql问题:5(row_number函数 分页.随机返回数据) 所以,觉得有必要记录下来,这样以后再次碰到这类问题,也能从中获取解答的思路. 1.在inner join后, ...

  6. C#基础--go to

    goto语句的用法非常灵活,你可以用它实现很多功能,但是由于goto语句的跳转影响程序的结构,在使用的时候会使人迷茫,所以一般"教材"上都不建议使用,但是用它可以实现递归,循环,选 ...

  7. Post请求数据传到后台+号变成了空格

    问题: 今天遇到一个问题:页面带有"+"号的数据,传到服务端接口,结果+号变成了空格.例如:传“1+1”变成了"1 1". 解决办法: 方案一: 将“+”号替换 ...

  8. VBA精彩代码分享-4

    VBA设置/取消工作簿共享是很常用的一个功能,那么如何用代码实现呢? 设置共享 Then MsgBox "文件没有保存" Exit Sub End If Application.D ...

  9. Cascader 级联选择器无法赋值

    问题: html: <el-cascader v-model="addform.qxvalue" :options="options" :props=&q ...

  10. 数据库入门(mySQL):创建数据库

    基于JetBrains DataGrip创建数据库.SQL语句创建数据库 MySQL数据库存储引擎和数据类型 创建数据库表及基本操作 导出数据库.删除数据库.导入数据库 一.基于JetBrains D ...