BZOJ 3679 数字之积 数位DP
思路:数位DP
提交:\(2\)次
错因:进行下一层\(dfs\)时的状态转移出错
题解:
还是记忆化搜索就行,但是要用\(map\)记忆化。
见代码
#include<cstdio>
#include<iostream>
#include<map>
#define R register int
#define ll long long
using namespace std;
namespace Luitaryi {
template<class I> inline I g(I& x) { x=0;
register I f=1; register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*=f;
} ll n,l,r,num[19],len,stk[19],top;
map<ll,ll> f[20];
inline void print() {
for(R i=1;i<=top;++i) cout<<stk[i];
}
inline ll dfs(int l,bool ul,bool ck,ll ml) {
if(l==0) {return ml<=n&&ml>0?1:0;}
if(!ul&&!ck&&f[l].count(ml)) return f[l][ml];
R mx=ul?num[l]:9; register ll cnt=0;
for(R i=0;i<=mx;++i)
if(ck&&i==0) stk[++top]=i,cnt+=dfs(l-1,ul&&i==mx,true,0),--top;//一直是前导零
else if(ck&&i!=0) stk[++top]=i,cnt+=dfs(l-1,ul&&i==mx,false,i),--top;//第一次不是前导零
else if(!ck&&i!=0) stk[++top]=i,cnt+=dfs(l-1,ul&&i==mx,false,ml*i),--top;//之前有不是前导零的时刻
//注意到i=0且不是前导零时就不必向下dfs了
return f[l][ml]=cnt;
}
inline ll solve(ll x) { len=0;
for(R i=1;i<=19;++i) f[i].clear();
while(x) num[++len]=x%10,x/=10;
return dfs(len,1,1,0);
}
inline void main() {g(n),g(l),g(r); printf("%lld\n",solve(r-1)-solve(l-1));}
} signed main() {Luitaryi::main(); return 0;}
2019.08.16
84
BZOJ 3679 数字之积 数位DP的更多相关文章
- bzoj 3679: 数字之积
Description 一个数x各个数位上的数之积记为\(f(x)\) 求[L,R)中满足\(0<f(x)<=n\)的数的个数 solution 最后\(f(x)\)可以拆分成2,3,5, ...
- BZOJ3679: 数字之积(数位dp)
题意 题目链接 Sol 推什么结论啊. 直接大力dp,$f[i][j]$表示第$i$位,乘积为$j$,第二维直接开map 能赢! /* */ #include<iostream> #inc ...
- BZOJ_1833_[ZJOI2010]count 数字计数_数位DP
BZOJ_1833_[ZJOI2010]count 数字计数_数位DP 题意: 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 分析: 数位DP f[i][ ...
- [BZOJ 1833] [ZJOI2010] count 数字计数 【数位DP】
题目链接:BZOJ - 1833 题目分析 数位DP .. 用 f[i][j][k] 表示第 i 位是 j 的 i 位数共有多少个数码 k . 然后差分询问...Get()中注意一下,如果固定了第 i ...
- 【BZOJ】1833: [ZJOI2010] count 数字计数(数位dp)
题目 传送门:QWQ 分析 蒟蒻不会数位dp,又是现学的 用$ dp[i][j][k] $ 表示表示长度为i开头j的所有数字中k的个数 然后预处理出这个数组,再计算答案 代码 #include < ...
- bzoj 1833: [ZJOI2010]count 数字计数【数位dp】
非典型数位dp 先预处理出f[i][j][k]表示从后往前第i位为j时k的个数,然后把答案转换为ans(r)-ans(l-1),用预处理出的f数组dp出f即可(可能也不是dp吧--) #include ...
- bzoj 3131 [Sdoi2013]淘金(数位DP+优先队列)
Description 小Z在玩一个叫做<淘金者>的游戏.游戏的世界是一个二维坐标.X轴.Y轴坐标范围均为1..N.初始的时候,所有的整数坐标点上均有一块金子,共N*N块. 一阵风吹 ...
- bzoj 3131 [Sdoi2013]淘金(数位dp)
题目描述 小Z在玩一个叫做<淘金者>的游戏.游戏的世界是一个二维坐标.X轴.Y轴坐标范围均为1..N.初始的时候,所有的整数坐标点上均有一块金子,共N*N块. 一阵风吹过,金子的位置发生了 ...
- 【BZOJ3679】数字之积 DFS+DP
[BZOJ3679]数字之积 Description 一个数x各个数位上的数之积记为f(x) <不含前导零>求[L,R)中满足0<f(x)<=n的数的个数 Input 第一行一 ...
随机推荐
- 【Docker】:使用docker安装mysql,挂载外部配置和数据
普通安装 1.下载镜像,mysql 5.7 docker pull mysql:5.7 2.创建mysql容器,并后台启动 docker run -d -p 3306:3306 -e MYSQL_US ...
- laravle6.0-IOC-DI浅谈
1.什么是IOC,DI IOC(Inversion of Control)控制反转:ioc意味着,你将自己设计好的对象交给容器来控制,而不是传统的在你的对象内部直接控制.比如: 人 操控 手机 做一些 ...
- 在VMware Workstation10下CentOS7虚拟机中创建与主机共享文件夹的详细步骤
一.前言 在使用虚拟机时,常常需要与宿主计算机(以下简称为主机)操作系统交换文件,为此需要在虚拟机与主机之间建立共享文件夹. 二. 安装VMTools 要使用共享文件机制,必须首先安装VMTools. ...
- 控制层解析post请求中json数据的时候,有些属性值为空
原因: 1.默认json数据解析的时候,值会赋给键的首字母是小写的封装的bean中的属性,如果没有首字母小写的属性,也不会报错.即bean中有getXXX方法时,从json到model会增加xxx属性 ...
- 剑指offer(9)——用两个栈实现队列
题目: 用两个栈实现一个队列.队列的声明如下,请实现它的两个函数appendTail和deleteHead,分别完成在队列尾部插入结点和在队列头部删除结点的功能. 思路: 首先定义两个栈stack1. ...
- jq使用ajax请求,返回状态 canceled错误
在使用jq,ajax请求时出现该错误 原因:button按钮类型为type=submit ,script中又自定用botton按钮点击提交ajax,造成冲突. 解决方法:button按钮类型改为 ty ...
- (一)Maven基础及第一个Maven工程
一.Maven介绍 ANT/Maven/gradle是一个项目管理工具,它包含了一项目对象模型(Project Object Model),一组标准集合,一个项目生命周期(Project Lifecy ...
- 对SPI进行参数化结构设计
前言 为了避免每次SPI驱动重写,直接参数化,尽量一劳永逸. SPI master有啥用呢,你发现各种外围芯片的配置一般都是通过SPI配置的,只不过有3线和四线. SPI slave有啥用呢,当外部主 ...
- PHP常见算法
算法的概念:解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或多个操作.一个问题可以有多种算法,每种算法都不同的效率.一个算法具有的特征:有穷,确切,输入,输出,可行 ...
- FlowPortal BPM多汇报线的设置及使用
1.在组织结构中设置多汇报线 2.流程中使用汇报线 3.流程节点上使用汇报线 流程节点默认启用流程中指定的汇报线,若流程中的某个节点需要启用特殊的汇报线,可通过设置节点业务属性实现.