MLP多层感知机
@author:wepon
@blog:http://blog.csdn.net/u012162613/article/details/43221829
转载:http://blog.csdn.net/u012162613/article/details/43221829
本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参考本文第一部分的算法简介。
经详细注释的代码:放在我的github地址上,可下载。
一、多层感知机(MLP)原理简介
多层感知机(MLP,Multilayer Perceptron)也叫人工神经网络(ANN,Artificial Neural Network),除了输入输出层,它中间可以有多个隐层,最简单的MLP只含一个隐层,即三层的结构,如下图:
从上图可以看到,多层感知机层与层之间是全连接的(全连接的意思就是:上一层的任何一个神经元与下一层的所有神经元都有连接)。多层感知机最底层是输入层,中间是隐藏层,最后是输出层。
输入层没什么好说,你输入什么就是什么,比如输入是一个n维向量,就有n个神经元。
隐藏层的神经元怎么得来?首先它与输入层是全连接的,假设输入层用向量X表示,则隐藏层的输出就是
f(W1X+b1),W1是权重(也叫连接系数),b1是偏置,函数f 可以是常用的sigmoid函数或者tanh函数:
最后就是输出层,输出层与隐藏层是什么关系?其实隐藏层到输出层可以看成是一个多类别的逻辑回归,也即softmax回归,所以输出层的输出就是softmax(W2X1+b2),X1表示隐藏层的输出f(W1X+b1)。
MLP整个模型就是这样子的,上面说的这个三层的MLP用公式总结起来就是,函数G是softmax
因此,MLP所有的参数就是各个层之间的连接权重以及偏置,包括W1、b1、W2、b2。对于一个具体的问题,怎么确定这些参数?求解最佳的参数是一个最优化问题,解决最优化问题,最简单的就是梯度下降法了(SGD):首先随机初始化所有参数,然后迭代地训练,不断地计算梯度和更新参数,直到满足某个条件为止(比如误差足够小、迭代次数足够多时)。这个过程涉及到代价函数、规则化(Regularization)、学习速率(learning rate)、梯度计算等,本文不详细讨论,读者可以参考本文顶部给出的两个链接。
了解了MLP的基本模型,下面进入代码实现部分。
二、多层感知机(MLP)代码详细解读(基于python+theano)
(1)导入必要的python模块
主要是numpy、theano,以及python自带的os、sys、time模块,这些模块的使用在下面的程序中会看到。
- import os
- import sys
- import time
- import numpy
- import theano
- import theano.tensor as T
(2)定义MLP模型(HiddenLayer+LogisticRegression)
这一部分定义MLP的基本“构件”,即上文一直在提的HiddenLayer和LogisticRegression
- HiddenLayer
隐含层我们需要定义连接系数W、偏置b,输入、输出,具体的代码以及解读如下:
- class HiddenLayer(object):
- def __init__(self, rng, input, n_in, n_out, W=None, b=None,
- activation=T.tanh):
- """
- 注释:
- 这是定义隐藏层的类,首先明确:隐藏层的输入即input,输出即隐藏层的神经元个数。输入层与隐藏层是全连接的。
- 假设输入是n_in维的向量(也可以说时n_in个神经元),隐藏层有n_out个神经元,则因为是全连接,
- 一共有n_in*n_out个权重,故W大小时(n_in,n_out),n_in行n_out列,每一列对应隐藏层的每一个神经元的连接权重。
- b是偏置,隐藏层有n_out个神经元,故b时n_out维向量。
- rng即随机数生成器,numpy.random.RandomState,用于初始化W。
- input训练模型所用到的所有输入,并不是MLP的输入层,MLP的输入层的神经元个数时n_in,而这里的参数input大小是(n_example,n_in),每一行一个样本,即每一行作为MLP的输入层。
- activation:激活函数,这里定义为函数tanh
- """
- self.input = input #类HiddenLayer的input即所传递进来的input
- """
- 注释:
- 代码要兼容GPU,则W、b必须使用 dtype=theano.config.floatX,并且定义为theano.shared
- 另外,W的初始化有个规则:如果使用tanh函数,则在-sqrt(6./(n_in+n_hidden))到sqrt(6./(n_in+n_hidden))之间均匀
- 抽取数值来初始化W,若时sigmoid函数,则以上再乘4倍。
- """
- #如果W未初始化,则根据上述方法初始化。
- #加入这个判断的原因是:有时候我们可以用训练好的参数来初始化W,见我的上一篇文章。
- if W is None:
- W_values = numpy.asarray(
- rng.uniform(
- low=-numpy.sqrt(6. / (n_in + n_out)),
- high=numpy.sqrt(6. / (n_in + n_out)),
- size=(n_in, n_out)
- ),
- dtype=theano.config.floatX
- )
- if activation == theano.tensor.nnet.sigmoid:
- W_values *= 4
- W = theano.shared(value=W_values, name='W', borrow=True)
- if b is None:
- b_values = numpy.zeros((n_out,), dtype=theano.config.floatX)
- b = theano.shared(value=b_values, name='b', borrow=True)
- #用上面定义的W、b来初始化类HiddenLayer的W、b
- self.W = W
- self.b = b
- #隐含层的输出
- lin_output = T.dot(input, self.W) + self.b
- self.output = (
- lin_output if activation is None
- else activation(lin_output)
- )
- #隐含层的参数
- self.params = [self.W, self.b]
- LogisticRegression
逻辑回归(softmax回归),代码详解如下。
(如果你想详细了解softmax回归,可以参考: DeepLearning tutorial(1)Softmax回归原理简介+代码详解)
- """
- 定义分类层,Softmax回归
- 在deeplearning tutorial中,直接将LogisticRegression视为Softmax,
- 而我们所认识的二类别的逻辑回归就是当n_out=2时的LogisticRegression
- """
- #参数说明:
- #input,大小就是(n_example,n_in),其中n_example是一个batch的大小,
- #因为我们训练时用的是Minibatch SGD,因此input这样定义
- #n_in,即上一层(隐含层)的输出
- #n_out,输出的类别数
- class LogisticRegression(object):
- def __init__(self, input, n_in, n_out):
- #W大小是n_in行n_out列,b为n_out维向量。即:每个输出对应W的一列以及b的一个元素。
- self.W = theano.shared(
- value=numpy.zeros(
- (n_in, n_out),
- dtype=theano.config.floatX
- ),
- name='W',
- borrow=True
- )
- self.b = theano.shared(
- value=numpy.zeros(
- (n_out,),
- dtype=theano.config.floatX
- ),
- name='b',
- borrow=True
- )
- #input是(n_example,n_in),W是(n_in,n_out),点乘得到(n_example,n_out),加上偏置b,
- #再作为T.nnet.softmax的输入,得到p_y_given_x
- #故p_y_given_x每一行代表每一个样本被估计为各类别的概率
- #PS:b是n_out维向量,与(n_example,n_out)矩阵相加,内部其实是先复制n_example个b,
- #然后(n_example,n_out)矩阵的每一行都加b
- self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b)
- #argmax返回最大值下标,因为本例数据集是MNIST,下标刚好就是类别。axis=1表示按行操作。
- self.y_pred = T.argmax(self.p_y_given_x, axis=1)
- #params,LogisticRegression的参数
- self.params = [self.W, self.b]
ok!这两个基本“构件”做好了,现在我们可以将它们“组装”在一起。
我们要三层的MLP,则只需要HiddenLayer+LogisticRegression,
如果要四层的MLP,则为HiddenLayer+HiddenLayer+LogisticRegression........以此类推。
下面是三层的MLP:
- #3层的MLP
- class MLP(object):
- def __init__(self, rng, input, n_in, n_hidden, n_out):
- self.hiddenLayer = HiddenLayer(
- rng=rng,
- input=input,
- n_in=n_in,
- n_out=n_hidden,
- activation=T.tanh
- )
- #将隐含层hiddenLayer的输出作为分类层logRegressionLayer的输入,这样就把它们连接了
- self.logRegressionLayer = LogisticRegression(
- input=self.hiddenLayer.output,
- n_in=n_hidden,
- n_out=n_out
- )
- #以上已经定义好MLP的基本结构,下面是MLP模型的其他参数或者函数
- #规则化项:常见的L1、L2_sqr
- self.L1 = (
- abs(self.hiddenLayer.W).sum()
- + abs(self.logRegressionLayer.W).sum()
- )
- self.L2_sqr = (
- (self.hiddenLayer.W ** 2).sum()
- + (self.logRegressionLayer.W ** 2).sum()
- )
- #损失函数Nll(也叫代价函数)
- self.negative_log_likelihood = (
- self.logRegressionLayer.negative_log_likelihood
- )
- #误差
- self.errors = self.logRegressionLayer.errors
- #MLP的参数
- self.params = self.hiddenLayer.params + self.logRegressionLayer.params
- # end-snippet-3
MLP类里面除了隐含层和分类层,还定义了损失函数、规则化项,这是在求解优化算法时用到的。
(3)将MLP应用于MNIST(手写数字识别)
- """
- 加载MNIST数据集
- """
- def load_data(dataset):
- # dataset是数据集的路径,程序首先检测该路径下有没有MNIST数据集,没有的话就下载MNIST数据集
- #这一部分就不解释了,与softmax回归算法无关。
- data_dir, data_file = os.path.split(dataset)
- if data_dir == "" and not os.path.isfile(dataset):
- # Check if dataset is in the data directory.
- new_path = os.path.join(
- os.path.split(__file__)[0],
- "..",
- "data",
- dataset
- )
- if os.path.isfile(new_path) or data_file == 'mnist.pkl.gz':
- dataset = new_path
- if (not os.path.isfile(dataset)) and data_file == 'mnist.pkl.gz':
- import urllib
- origin = (
- 'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz'
- )
- print 'Downloading data from %s' % origin
- urllib.urlretrieve(origin, dataset)
- print '... loading data'
- #以上是检测并下载数据集mnist.pkl.gz,不是本文重点。下面才是load_data的开始
- #从"mnist.pkl.gz"里加载train_set, valid_set, test_set,它们都是包括label的
- #主要用到python里的gzip.open()函数,以及 cPickle.load()。
- #‘rb’表示以二进制可读的方式打开文件
- f = gzip.open(dataset, 'rb')
- train_set, valid_set, test_set = cPickle.load(f)
- f.close()
- #将数据设置成shared variables,主要时为了GPU加速,只有shared variables才能存到GPU memory中
- #GPU里数据类型只能是float。而data_y是类别,所以最后又转换为int返回
- def shared_dataset(data_xy, borrow=True):
- data_x, data_y = data_xy
- shared_x = theano.shared(numpy.asarray(data_x,
- dtype=theano.config.floatX),
- borrow=borrow)
- shared_y = theano.shared(numpy.asarray(data_y,
- dtype=theano.config.floatX),
- borrow=borrow)
- return shared_x, T.cast(shared_y, 'int32')
- test_set_x, test_set_y = shared_dataset(test_set)
- valid_set_x, valid_set_y = shared_dataset(valid_set)
- train_set_x, train_set_y = shared_dataset(train_set)
- rval = [(train_set_x, train_set_y), (valid_set_x, valid_set_y),
- (test_set_x, test_set_y)]
- return rval
- #test_mlp是一个应用实例,用梯度下降来优化MLP,针对MNIST数据集
- def test_mlp(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=10,
- dataset='mnist.pkl.gz', batch_size=20, n_hidden=500):
- """
- 注释:
- learning_rate学习速率,梯度前的系数。
- L1_reg、L2_reg:正则化项前的系数,权衡正则化项与Nll项的比重
- 代价函数=Nll+L1_reg*L1或者L2_reg*L2_sqr
- n_epochs:迭代的最大次数(即训练步数),用于结束优化过程
- dataset:训练数据的路径
- n_hidden:隐藏层神经元个数
- batch_size=20,即每训练完20个样本才计算梯度并更新参数
- """
- #加载数据集,并分为训练集、验证集、测试集。
- datasets = load_data(dataset)
- train_set_x, train_set_y = datasets[0]
- valid_set_x, valid_set_y = datasets[1]
- test_set_x, test_set_y = datasets[2]
- #shape[0]获得行数,一行代表一个样本,故获取的是样本数,除以batch_size可以得到有多少个batch
- n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
- n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size
- n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size
- ######################
- # BUILD ACTUAL MODEL #
- ######################
- print '... building the model'
- #index表示batch的下标,标量
- #x表示数据集
- #y表示类别,一维向量
- index = T.lscalar()
- x = T.matrix('x')
- y = T.ivector('y')
- rng = numpy.random.RandomState(1234)
- #生成一个MLP,命名为classifier
- classifier = MLP(
- rng=rng,
- input=x,
- n_in=28 * 28,
- n_hidden=n_hidden,
- n_out=10
- )
- #代价函数,有规则化项
- #用y来初始化,而其实还有一个隐含的参数x在classifier中
- cost = (
- classifier.negative_log_likelihood(y)
- + L1_reg * classifier.L1
- + L2_reg * classifier.L2_sqr
- )
- #这里必须说明一下theano的function函数,givens是字典,其中的x、y是key,冒号后面是它们的value。
- #在function被调用时,x、y将被具体地替换为它们的value,而value里的参数index就是inputs=[index]这里给出。
- #下面举个例子:
- #比如test_model(1),首先根据index=1具体化x为test_set_x[1 * batch_size: (1 + 1) * batch_size],
- #具体化y为test_set_y[1 * batch_size: (1 + 1) * batch_size]。然后函数计算outputs=classifier.errors(y),
- #这里面有参数y和隐含的x,所以就将givens里面具体化的x、y传递进去。
- test_model = theano.function(
- inputs=[index],
- outputs=classifier.errors(y),
- givens={
- x: test_set_x[index * batch_size:(index + 1) * batch_size],
- y: test_set_y[index * batch_size:(index + 1) * batch_size]
- }
- )
- validate_model = theano.function(
- inputs=[index],
- outputs=classifier.errors(y),
- givens={
- x: valid_set_x[index * batch_size:(index + 1) * batch_size],
- y: valid_set_y[index * batch_size:(index + 1) * batch_size]
- }
- )
- #cost函数对各个参数的偏导数值,即梯度,存于gparams
- gparams = [T.grad(cost, param) for param in classifier.params]
- #参数更新规则
- #updates[(),(),()....],每个括号里面都是(param, param - learning_rate * gparam),即每个参数以及它的更新公式
- updates = [
- (param, param - learning_rate * gparam)
- for param, gparam in zip(classifier.params, gparams)
- ]
- train_model = theano.function(
- inputs=[index],
- outputs=cost,
- updates=updates,
- givens={
- x: train_set_x[index * batch_size: (index + 1) * batch_size],
- y: train_set_y[index * batch_size: (index + 1) * batch_size]
- }
- )
- ###############
- # 开始训练模型 #
- ###############
- print '... training'
- patience = 10000
- patience_increase = 2
- #提高的阈值,在验证误差减小到之前的0.995倍时,会更新best_validation_loss
- improvement_threshold = 0.995
- #这样设置validation_frequency可以保证每一次epoch都会在验证集上测试。
- validation_frequency = min(n_train_batches, patience / 2)
- best_validation_loss = numpy.inf
- best_iter = 0
- test_score = 0.
- start_time = time.clock()
- #epoch即训练步数,每个epoch都会遍历所有训练数据
- epoch = 0
- done_looping = False
- #下面就是训练过程了,while循环控制的时步数epoch,一个epoch会遍历所有的batch,即所有的图片。
- #for循环是遍历一个个batch,一次一个batch地训练。for循环体里会用train_model(minibatch_index)去训练模型,
- #train_model里面的updatas会更新各个参数。
- #for循环里面会累加训练过的batch数iter,当iter是validation_frequency倍数时则会在验证集上测试,
- #如果验证集的损失this_validation_loss小于之前最佳的损失best_validation_loss,
- #则更新best_validation_loss和best_iter,同时在testset上测试。
- #如果验证集的损失this_validation_loss小于best_validation_loss*improvement_threshold时则更新patience。
- #当达到最大步数n_epoch时,或者patience<iter时,结束训练
- while (epoch < n_epochs) and (not done_looping):
- epoch = epoch + 1
- for minibatch_index in xrange(n_train_batches):#训练时一个batch一个batch进行的
- minibatch_avg_cost = train_model(minibatch_index)
- # 已训练过的minibatch数,即迭代次数iter
- iter = (epoch - 1) * n_train_batches + minibatch_index
- #训练过的minibatch数是validation_frequency倍数,则进行交叉验证
- if (iter + 1) % validation_frequency == 0:
- # compute zero-one loss on validation set
- validation_losses = [validate_model(i) for i
- in xrange(n_valid_batches)]
- this_validation_loss = numpy.mean(validation_losses)
- print(
- 'epoch %i, minibatch %i/%i, validation error %f %%' %
- (
- epoch,
- minibatch_index + 1,
- n_train_batches,
- this_validation_loss * 100.
- )
- )
- #当前验证误差比之前的都小,则更新best_validation_loss,以及对应的best_iter,并且在tsetdata上进行test
- if this_validation_loss < best_validation_loss:
- if (
- this_validation_loss < best_validation_loss *
- improvement_threshold
- ):
- patience = max(patience, iter * patience_increase)
- best_validation_loss = this_validation_loss
- best_iter = iter
- test_losses = [test_model(i) for i
- in xrange(n_test_batches)]
- test_score = numpy.mean(test_losses)
- print((' epoch %i, minibatch %i/%i, test error of '
- 'best model %f %%') %
- (epoch, minibatch_index + 1, n_train_batches,
- test_score * 100.))
- #patience小于等于iter,则终止训练
- if patience <= iter:
- done_looping = True
- break
- end_time = time.clock()
- print(('Optimization complete. Best validation score of %f %% '
- 'obtained at iteration %i, with test performance %f %%') %
- (best_validation_loss * 100., best_iter + 1, test_score * 100.))
- print >> sys.stderr, ('The code for file ' +
- os.path.split(__file__)[1] +
- ' ran for %.2fm' % ((end_time - start_time) / 60.))
MLP多层感知机的更多相关文章
- DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解
本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参 ...
- 【TensorFlow入门完全指南】神经网络篇·MLP多层感知机
前面的不做过多解释了. 这里定义了两个占位符,各位也知道,在训练时,feed_dict会填充它们. 定义相关网络. 这里是权值矩阵和偏差. 这里是实例化了网络,定义了优化器和损失,和上一篇一样. 最后 ...
- TensorFlow学习笔记7-深度前馈网络(多层感知机)
深度前馈网络(前馈神经网络,多层感知机) 神经网络基本概念 前馈神经网络在模型输出和模型本身之间没有反馈连接;前馈神经网络包含反馈连接时,称为循环神经网络. 前馈神经网络用有向无环图表示. 设三个函数 ...
- Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...
- keras多层感知机MLP
肯定有人要说什么多层感知机,不就是几个隐藏层连接在一起的吗.话是这么说,但是我觉得我们首先要自己承认自己高级,不然怎么去说服(hu nong)别人呢 from keras.models import ...
- 小白学习之pytorch框架(5)-多层感知机(MLP)-(tensor、variable、计算图、ReLU()、sigmoid()、tanh())
先记录一下一开始学习torch时未曾记录(也未好好弄懂哈)导致又忘记了的tensor.variable.计算图 计算图 计算图直白的来说,就是数学公式(也叫模型)用图表示,这个图即计算图.借用 htt ...
- DeepLearning学习(1)--多层感知机
想直接学习卷积神经网络,结果发现因为神经网络的基础较弱,学习起来比较困难,所以准备一步步学.并记录下来,其中会有很多摘抄. (一)什么是多层感知器和反向传播 1,单个神经元 神经网络的基本单元就是神经 ...
- Theano3.4-练习之多层感知机
来自http://deeplearning.net/tutorial/mlp.html#mlp Multilayer Perceptron note:这部分假设读者已经通读之前的一个练习 Classi ...
- 学习笔记TF026:多层感知机
隐含层,指除输入.输出层外,的中间层.输入.输出层对外可见.隐含层对外不可见.理论上,只要隐含层节点足够多,只有一个隐含层,神经网络可以拟合任意函数.隐含层越多,越容易拟合复杂函数.拟合复杂函数,所需 ...
随机推荐
- LeetCode 515. 在每个树行中找最大值(Find Largest Value in Each Tree Row)
515. 在每个树行中找最大值 515. Find Largest Value in Each Tree Row 题目描述 You need to find the largest value in ...
- 解决 IE 或者兼容模式不支持 document.getElementsByClassName() 的方法
网页错误详细信息消息: 对象不支持此属性或方法 document.getElementsByClassName('element_name') 需要自己实现下该方法,因为ie5之前的版本并不支持这个方 ...
- Python32之类和对象2(self参数及魔法方法)
一.类方法中的self参数含义 在Python中类的方法都要有self参数,其实质为对类的实例化对象的绑定从而使得在类的实例化对象调用方法时能够确认出是对哪个对象进行操作. 带self的的参数是人家实 ...
- P1308(字符串类,处理字符串查找)
题目描述 一般的文本编辑器都有查找单词的功能,该功能可以快速定位特定单词在文章中的位置,有的还能统计出特定单词在文章中出现的次数. 现在,请你编程实现这一功能,具体要求是:给定一个单词,请你输出它在给 ...
- ORA-01618 ORA-19809: limit exceeded for recovery files
由于DB_RECOVERY_FILE_DEST_SIZE 参数设置太小,导致redo只能创建一组,无法创建节点二的日志组,节点二数据库无法启动,如下图: 修改参数后,节点二无法启动到mount模式,无 ...
- python离线安装外部库(第三方库)
在官网下好外部库,解压后,点击解压后的文件夹,按住shift 右击在命令行中执行 输入 python setup.py install
- 20190705-记IIS发布.NET CORE框架系统之所遇
新手在IIS上发布.NET CORE框架的系统之注意事项 序:本篇随笔是我的处子笔,只想记录自己觉得在系统发布过程中比较重要的步骤,一来,忝作自己的学习笔记,以备不时之需,二来,也希望可以帮助有需要的 ...
- centos安装rocketMQ
1.下载安装包 http://rocketmq.apache.org/release_notes/ 这里选择 4.4.0 版本,点击进去 可以选择源码包或者二进制文件,这里选择二进制文件(ps:如果选 ...
- javascript/js实现 排序二叉树数据结构 学习随笔
二叉树是一种数据结构.其特点是: 1.由一系列节点组成,具有层级结构.每个节点的特性包含有节点值.关系指针.节点之间存在对应关系. 2.树中存在一个没有父节点的节点,叫做根节点.树的末尾存在一系列没有 ...
- sql server存储过程解密
解密存储过程: USE [RYTreasureDB] GO /****** Object: StoredProcedure [dbo].[sp__windbi$decrypt] Script Date ...