图像模糊C均值聚类分割代码
转自:直觉模糊C均值聚类与图像阈值分割 - liyuefeilong的专栏 - CSDN博客 https://blog.csdn.net/liyuefeilong/article/details/43816495
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 主函数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function main
ima = imread('MR6.jpg');
% 先设定FCM的几个初始参数
options=[; % FCM公式中的参数m
; % 最大迭代次数
1e-]; % 目标函数的最小误差
class_number = ; % 分为4类
imt = ImageSegmentation(ima,class_number,options)
subplot(,,),imshow(ima),title('原图');
subplot(,,),imshow(imt); %显示生成的分割的图像
kk = strcat('分割成',int2str(class_number),'类的输出图像');
title(kk); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ImageSegmentation()函数:实现聚类分割图像
% 输入:file为灰度图像文件 cluster_n为聚类类别个数 options为预设的初始参数
% 输出分割后的图像
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function imt = ImageSegmentation(file, cluster_n, options)
ima = file;
I = im2double(file);
[x,y] = size(ima);
number = x * y; % 图像的元素个数numel(I)
data = reshape(I,number,); %将矩阵元素转换为一列数据
[center, U] = FCMprocess(data,cluster_n,options); %调用FCMData函数进行聚类
% 对于每个元素对不同聚类中心的隶属度,找出最大的那个隶属度
maxU = max(U); % 找出每一列的最大隶属度
temp = sort(center);
for i = :cluster_n; % 按聚类结果分割图像
% 前面求出每个元素的最大隶属度,属于各聚类中心的元素坐标,并存放这些坐标
% 调用eval函数将括号里的字符串转化为命令执行
eval(['class_',int2str(i), '= find(U(', int2str(i), ',:) == maxU);']);
%gray = round( * (i-) / (cluster_n-));
index = find(temp == center(i));
switch index
case
gray = ;
case cluster_n
gray = ;
otherwise
gray = fix(*(index-)/(cluster_n-));
end
eval(['I(class_',int2str(i), '(:))=', int2str(gray),';']);
end;
imt = mat2gray(I); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 用于计算聚类中心、隶属度矩阵和目标函数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [center, U] = FCMprocess(data, cluster_num, options)
%data为聚类数据,cluster_num为类别数
m = options(); % 参数m
max_iteration = options(); % 最终的迭代次数
min_deviation = options(); % 最小判别误差
data_number = size(data, ); % 元素个数
obj_function = zeros(max_iteration, ); % obj_function用于存放目标函数的值
% 生成隶属度矩阵U
U = rand(cluster_num, data_number); % 随机生成隶属度矩阵U
sumU = sum(U,); % 计算U中每列元素和
for k = :data_number
U(:,k) = U(:,k) ./ sumU(k); % 对隶属矩阵U进行归一化处理
end for i = :max_iteration
[U, center, obj_function(i)] = FCMStep(data, U, cluster_num, m); %调用FCMStep函数进行迭代
fprintf('第%d次迭代, 目标函数值为%f\n', i, obj_function(i));
% 检查迭代终止条件
if i > ,
if abs(obj_function(i) - obj_function(i-)) < min_deviation
break;
end
end
end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 该函数用于每次迭代过程
function [newU,center,obj_function] = FCMStep(data, U, cluster_num, m)
% data为被聚类数据,U为隶属度矩阵,cluster_num为聚类类别数,m为FCM中的参数m
% 函数调用后得到新的隶属度矩阵newU,聚类中心center,目标函数值obj_function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 以下是计算模糊隶属度Ut
[x,y] = size(U);
A = ones(x,y);
a = 0.85;
Ut = abs(A - U -(A - (U).^a).^(/a));
Ud = U + Ut;
[j,k,l] = size(data);
pp = y;
pai = (sum(Ut,)) ./pp;
obj = sum(pai.*exp(-pai));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Ud = U;
% obj = ;
nf = Ud;
mf = Ud.^m; % FMC中的U^m
% center = nf*data./((ones(size(data, ), )*sum(nf'))'); % 得到聚类中心 data1 = zeros(x,y);
data1(,:) = data';
data1(,:) = data';
data1(,:) = data';
data1(,:) = data';
% data1(,:) = data';
center = sum(nf.*data1,)./sum(nf,); % 得到聚类中心 dist = Distance(center, data); % 调用myfcmdist函数计算聚类中心与被聚类数据的距离
obj_function = sum(sum((dist.^).*mf))+obj; % 得到目标函数值
tmp = dist.^(-/(m-)); % 如果迭代次数不为1,计算新的隶属度矩阵
newU = tmp./(ones(cluster_num, )*sum(tmp)); % U_new为新的隶属度矩阵 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Distance()函数用于计算聚类中心与被聚类数据的距离
% center为聚类中心,data为被聚类数据,输出各元素到聚类中心的距离out
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function out = Distance(center, data) data_number = size(data,);
class_number = size(center, );
kk = ones(data_number,); % 构造与数据大小相同的全1矩阵kk
out = zeros(class_number, data_number);
if size(center, ) > , %若类别数大于1
for k = :class_number
out(k, :) = sqrt(sum(((data - kk...
*center(k,:)).^)'));
end
else % data为一维数据
for k = :class_number
out(k, :) = abs(center(k) - data)';
end
end
图像模糊C均值聚类分割代码的更多相关文章
- 【机器学习】:Kmeans均值聚类算法原理(附带Python代码实现)
这个算法中文名为k均值聚类算法,首先我们在二维的特殊条件下讨论其实现的过程,方便大家理解. 第一步.随机生成质心 由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给 ...
- 基于核方法的模糊C均值聚类
摘要: 本文主要针对于FCM算法在很大程度上局限于处理球星星团数据的不足,引入了核方法对算法进行优化. 与许多聚类算法一样,FCM选择欧氏距离作为样本点与相应聚类中心之间的非相似性指标,致使算法趋向 ...
- k均值聚类算法原理和(TensorFlow)实现
顾名思义,k均值聚类是一种对数据进行聚类的技术,即将数据分割成指定数量的几个类,揭示数据的内在性质及规律. 我们知道,在机器学习中,有三种不同的学习模式:监督学习.无监督学习和强化学习: 监督学习,也 ...
- 5-Spark高级数据分析-第五章 基于K均值聚类的网络流量异常检测
据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章 ...
- 机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例
k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定 ...
- Python实现kMeans(k均值聚类)
Python实现kMeans(k均值聚类) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=> ...
- 多核模糊C均值聚类
摘要: 针对于单一核在处理多数据源和异构数据源方面的不足,多核方法应运而生.本文是将多核方法应用于FCM算法,并对算法做以详细介绍,进而采用MATLAB实现. 在这之前,我们已成功将核方法应用于FCM ...
- 机器学习理论与实战(十)K均值聚类和二分K均值聚类
接下来就要说下无监督机器学习方法,所谓无监督机器学习前面也说过,就是没有标签的情况,对样本数据进行聚类分析.关联性分析等.主要包括K均值聚类(K-means clustering)和关联分析,这两大类 ...
- 图像检索(2):均值聚类-构建BoF
在图像检索时,通常首先提取图像的局部特征,这些局部特征通常有很高的维度(例如,sift是128维),有很多的冗余信息,直接利用局部特征进行检索,效率和准确度上都不是很好.这就需要重新对提取到的局部特征 ...
随机推荐
- Django权限和认证模块的解读
from rest_framework.views import APIView 找到APIView中的dispatch方法 class MyAuth: def authenticate(self): ...
- mysql全量和增量备份详解(带脚本)
在日常运维工作中,对mysql数据库的备份是万分重要的,以防在数据库表丢失或损坏情况出现,可以及时恢复数据. 下面对这种备份方案详细说明下:1.MySQLdump增量备份配置执行增量备份的前提条件是M ...
- 用7天找到月薪9K的Linux运维工作,就靠这四点
作者:99527 来源:http://www.yunweipai.com/archives/20865.html 毕业后做了1年IDC运维,每天看看服务器状态,检查检查硬盘.内存什么的,工作没什么技术 ...
- 0004SpringBoot整合Redis
在已经整合了SpringDataJPA和Junit的基础上,整合Redis,只需要一下几步即可: 1.下载64windows版的Redis安装包.解压并启动服务端 2.配置Redis的起步依赖(pom ...
- 对Ajax的一些理解
前言 在学习js的过程,我个人对于Ajax这项技术有着很深的印象,大概是因为它在我们网页开发过程中常见的交互里所发挥的作用太过于关键了吧,所以我想在这里好好地谈一些自己对它的理解. 概念理解 Ajax ...
- DOM查找
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- C语言学习系列(二)面向过程和面向对象
一.基本定义 (一).面向过程(procedure oriented programming POP) 面向过程是分析解决问题的步骤,然后用函数把这些步骤一步一步的实现,然后在使用的时候一一调用则可. ...
- js访问数据库
一.js访问数据库的一般步骤: 1. 创建一个到数据库的 ADO 连接 conn = new ActiveXObject("ADODB.Connection"); 2. 打开数据库 ...
- SIGAI机器学习第五集 贝叶斯分类器
讲授贝叶斯公式.朴素贝叶斯分类器.正态贝叶斯分类器的原理.实现以及实际应用 大纲: 贝叶斯公式(直接用贝叶斯公式完成分类,计算一个样本的特征向量X属于每个类c的概率,这个计算是通过贝叶斯公式来完成的. ...
- WSDL的学习
1.WSDL是什么? 2.wsdl说明书结构 拿到说明书,从下往上看, 图2-1 port:为端点 binding:绑定 图2-2 type属性----->找到portType标签 operat ...