题目描述:

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

解法一:暴力解法

首先应该想到用“暴力解法”做,遍历所有的子区间

这里要注意一些边界条件,等于不等于需要仔细考虑。如下:

变量 i 表示结尾的那个索引;
变量 j 表示从索引 0 依次向前走;
通过双层循环,可以穷举所有的子区间,然后再对子区间内的所有元素求和。因此时间复杂度是立方级别的。

代码实现:

public class Solution {

    public int maxSubArray(int[] nums) {
int len = nums.length;
int res = Integer.MIN_VALUE;
for (int i = 0; i < len; i++) {
for (int j = 0; j <= i; j++) {
int sum = sumOfSubArray(nums, j, i);
res = Math.max(res, sum);
}
}
return res;
} private int sumOfSubArray(int[] nums, int left, int right) {
// 子区间的和
int res = 0;
for (int i = left; i <= right; i++) {
res += nums[i];
}
return res;
} }

复杂度分析:

  • 时间复杂度:O(N^3),这里 NN 为数组的长度。
  • 空间复杂度:O(1)。

解法二:动态规划

题目解析:

的是首先对数组进行遍历,当前最大连续子序列和为 sum,结果为 ans
如果 sum > 0,则说明 sum 对结果有增益效果,则 sum 保留并加上当前遍历数字
如果 sum <= 0,则说明 sum 对结果无增益效果,需要舍弃,则 sum 直接更新为当前遍历数字
每次比较 sum 和 ans的大小,将最大值置为ans,遍历结束返回结果

代码实现:

package com.company;

/**
* @author yaoshw
*/
public class Main { public static void main(String[] args) { int[] nums = new int[]{-2, 1, -3, 4, -1, 2, 1, -5, 4};
System.out.println(maxSubArray(nums));
} public static int maxSubArray(int[] nums) {
if (nums == null || nums.length == 0) {
return Integer.MAX_VALUE;
}
//记录最大值
int maxSum = nums[0];
int curSum = 0;
for (int i = 0; i < nums.length; i++) {
if(curSum>=0) {
curSum = curSum + nums[i];
} else {
curSum = nums[i];
}
maxSum = Math.max(curSum, maxSum);
}
return maxSum;
} }

时间复杂度:O(n)

进阶解法:分治法

思路解析:

最大子序和要么在左半边,要么在右半边,要么是穿过中间,对于左右边的序列,情况也是一样,因此可以用递归处理。中间部分的则可以直接计算出来

代码实现:

public class Solution {

    public int maxSubArray(int[] nums) {
int len = nums.length;
if (len == 0) {
return 0;
}
return maxSubArraySum(nums, 0, len - 1);
} private int maxCrossingSum(int[] nums, int left, int mid, int right) {
// 一定会包含 nums[mid] 这个元素
int sum = 0;
int leftSum = Integer.MIN_VALUE;
// 左半边包含 nums[mid] 元素,最多可以到什么地方
// 走到最边界,看看最值是什么
// 计算以 mid 结尾的最大的子数组的和
for (int i = mid; i >= left; i--) {
sum += nums[i];
if (sum > leftSum) {
leftSum = sum;
}
}
sum = 0;
int rightSum = Integer.MIN_VALUE;
// 右半边不包含 nums[mid] 元素,最多可以到什么地方
// 计算以 mid+1 开始的最大的子数组的和
for (int i = mid + 1; i <= right; i++) {
sum += nums[i];
if (sum > rightSum) {
rightSum = sum;
}
}
return leftSum + rightSum; } private int maxSubArraySum(int[] nums, int left, int right) {
if (left == right) {
return nums[left];
}
int mid = (left + right) >>> 1;
return max3(maxSubArraySum(nums, left, mid),
maxSubArraySum(nums, mid + 1, right),
maxCrossingSum(nums, left, mid, right));
} private int max3(int num1, int num2, int num3) {
return Math.max(num1, Math.max(num2, num3));
}
}

时间复杂度: O(nlogn)

Leetcode题目53.最大子序和(动态规划-简单)的更多相关文章

  1. leetcode之53.最大子序和

    题目详情 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. 示例: 输入: [-2,1,-3,4,-1,2,1,-5,4], 输出: 6 解释: ...

  2. 【LeetCode】53.最大子序和

    最大子序和 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. 示例: 输入: [-2,1,-3,4,-1,2,1,-5,4], 输出: 6 解释: ...

  3. Leetcode之动态规划(DP)专题-53. 最大子序和(Maximum Subarray)

    Leetcode之动态规划(DP)专题-53. 最大子序和(Maximum Subarray) 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. ...

  4. LeetCode 53. 最大子序和(Maximum Subarray)

    53. 最大子序和 53. Maximum Subarray 题目描述 给定一个整数数组 nums,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. LeetCode53. M ...

  5. Java实现 LeetCode 53 最大子序和

    53. 最大子序和 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. 示例: 输入: [-2,1,-3,4,-1,2,1,-5,4], 输出: 6 ...

  6. leetcode 120. 三角形最小路径和 及 53. 最大子序和

    三角形最小路径和 问题描述 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] ...

  7. 53. 最大子序和(剑指 Offer 42)

    53. 最大子序和(剑指 Offer 42) 知识点:数组:前缀和:哨兵:动态规划:贪心:分治: 题目描述 输入一个整型数组,数组中的一个或连续多个整数组成一个子数组.求所有子数组的和的最大值. 要求 ...

  8. 1. 线性DP 53. 最大子序和.

    53. 最大子序和. https://leetcode-cn.com/problems/maximum-subarray/ func maxSubArray(nums []int) int { dp ...

  9. Leetcode——53.最大子序和

    @author: ZZQ @software: PyCharm @file: leetcode53_最大子序和.py @time: 2018/11/26 12:39 要求:给定一个整数数组 nums ...

随机推荐

  1. JS闭包的简单理解。优缺点以及垃圾回收机制

    闭包是什么? ·了解闭包首先了解js的‘链式作用域’结构,对象可以一级一级的向上查找父对象的变量,所以父对象的变量对子对象可见,反之不成立:所以都可以访问全局变量 ·为了解决函数外部无法访问函数内局部 ...

  2. css3之媒体查询

    <html> <head> <meta charset="utf-8"> <style> body{ background-colo ...

  3. 通过hadoop上的hive完成WordCount

    1.启动hadoop 打开所有命令:start-all.sh 2.Hdfs上创建文件夹 创建名为PGOne到user/hadoop 3.上传文件至hdfs 创建和修改508.txt文件,里面尽量多写一 ...

  4. MYSQL AND 和 OR

    AND 和 OR     如果你失忆了,希望你能想起曾经为了追求梦想的你.    QQ群:651080565(php/web 学习课堂)   我们查询数据的时候,会使用条件来过滤数据,达到筛选效果,过 ...

  5. Spring之XML解析

    XML解析,我们可以通过我们常用的以下代码作为入口 也许,我们习惯使用第一种加载方式,但是以前也存在 第二种加载,并且这两种加载也有差别,下面再来分析. 先分析 第二种 使用 BeanFactory ...

  6. 【python】Logging模块

    1.日志记录级别 logging.debug<logging.info<logging.warning<logging.error<logging.critical 关键是最高 ...

  7. 【2】Kafka概念及原理

    1.Kafka背景 1.1.Kafka概要  Apache Kafka是一个开源的.轻量级的.分布式的.可分区的.可复制备份的.基于zookeeper协调管理的分布式流式消息系统.由Scala写成,支 ...

  8. 轻量化模型之SqueezeNet

    自 2012 年 AlexNet 以来,卷积神经网络在图像分类.目标检测.语义分割等领域获得广泛应用.随着性能要求越来越高,AlexNet 已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的 ...

  9. 计算机基础与python入门

    一.计算机.cpu与存储器 二.操作系统.编程语言及编写python.变量 三.数据类型.输入输出及基本运算 四.流程控制之if判断.while与for循环 一.计算机.cpu与存储器 1. 什么是编 ...

  10. string::crbegin string::crend

    const_reverse_iterator crbegin() const noexcept;功能:crbegin是最后一个字符,crend第一个字符的前一个.迭代器向左移动是“+”,向右移动是“- ...