pytorch-Resnet网络
残差网络:将输入层与输出层进行连接,保证了经过这层网路结构,网络的运算能力不会出现较大的改变
网络解析:
第一层网络: 输入网络经过一个卷积层,再经过一个batch_normalize, 再经过一个relu层
第二层网络;经过一层卷积层,将卷积后的网络与原输入数据进行对应位置相加操作, 将加和后的网络进行batch_normalize, 再经过一层relu
import torch
from torch import nn def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False) # 定义卷积层 class BasicBlock(nn.Module):
def __init__(self, inplanes, outplanes, stride, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, outplanes, stride=stride) # 第一个卷积
self.bn = nn.BatchNorm2d(outplanes) # 定义batch_norm层
self.relu = nn.ReLU(inplace=True) # 定义激活层
self.conv2 = conv3x3(outplanes, outplanes, stride=stride) # 第二个卷积
self.bn2 = nn.BatchNorm1d(outplanes) # 进行标准化操作
self.downsample = downsample # 进行维度的降低, 通常使用卷积操作来进行维度的降低 def forward(self, x): residual = x # 原始的残差模块 x = self.conv1(x) # 第一次卷积
x = self.bn(x) # 归一化操作
x = self.relu(x) # 激活操作 x = self.conv2(x) # 第二次卷积
out = self.bn2(x) # 归一化操作 if self.downsample is not None:
residual = self.downsample(x) # 是否需要对原始的样本做降采样操作 out += residual # 进行加和操作
out = self.relu(out) # 进行激活操作 return out
pytorch-Resnet网络的更多相关文章
- PyTorch对ResNet网络的实现解析
PyTorch对ResNet网络的实现解析 1.首先导入需要使用的包 import torch.nn as nn import torch.utils.model_zoo as model_zoo # ...
- 学习笔记-ResNet网络
ResNet网络 ResNet原理和实现 总结 一.ResNet原理和实现 神经网络第一次出现在1998年,当时用5层的全连接网络LetNet实现了手写数字识别,现在这个模型已经是神经网络界的“hel ...
- 0609-搭建ResNet网络
0609-搭建ResNet网络 目录 一.ResNet 网络概述 二.利用 torch 实现 ResNet34 网络 三.torchvision 中的 resnet34网络调用 四.第六章总结 pyt ...
- Resnet网络详细结构(针对Cifar10)
Resnet网络详细结构(针对Cifar10) 结构 具体结构(Pytorch) conv1 (conv1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, ...
- ResNet网络再剖析
随着2018年秋季的到来,提前批和内推大军已经开始了,自己也成功得当了几次炮灰,不过在总结的过程中,越是了解到自己的不足,还是需要加油. 最近重新复习了resnet网络,又能发现一些新的理念,感觉很f ...
- 深度学习之ResNet网络
介绍 Resnet分类网络是当前应用最为广泛的CNN特征提取网络. 我们的一般印象当中,深度学习愈是深(复杂,参数多)愈是有着更强的表达能力.凭着这一基本准则CNN分类网络自Alexnet的7层发展到 ...
- ResNet网络的训练和预测
ResNet网络的训练和预测 简介 Introduction 图像分类与CNN 图像分类 是指将图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法,是计算机视觉中其他任务,比如目标检测 ...
- ResNet网络的Pytorch实现
1.文章原文地址 Deep Residual Learning for Image Recognition 2.文章摘要 神经网络的层次越深越难训练.我们提出了一个残差学习框架来简化网络的训练,这些 ...
- PyTorch ResNet 使用与源码解析
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson8/resnet_inference.py 这篇文章首先会简 ...
- 深度残差网络(DRN)ResNet网络原理
一说起“深度学习”,自然就联想到它非常显著的特点“深.深.深”(重要的事说三遍),通过很深层次的网络实现准确率非常高的图像识别.语音识别等能力.因此,我们自然很容易就想到:深的网络一般会比浅的网络效果 ...
随机推荐
- EasyUI中的重要的控件和属性
data-options: precision:2 保留2为小数 validType:
- oracel数据泵导出导入
Oracle11g 使用数据泵导入/导出数据 expdp/impdp 目标:使用oracle数据泵,将A电脑上的数据库databaseA导出后,再导入到B电脑上的数据库databaseB中. A电脑上 ...
- PHP扩展模块php_igbinary和php_redis的安装
php_igbinary : 在序列化和反序列化的效率上高于其自带的 php_redis :效率是相当高有链表排序功能 详情略 安装之前要准备 百度网盘: wampserver2.5-A ...
- GITHUB readme基本语法
一.标题写法: 第一种方法: 1.在文本下面加上 等于号 = ,那么上方的文本就变成了大标题.等于号的个数无限制,但一定要大于0个哦.. 2.在文本下面加上 下划线 - ,那么上方的文本就变成了中标题 ...
- 013.子查询和分页子查询(sql实例)
--1 子查询 如果子查询和表连接都实现的时候,推荐用表连接实现( 一般:能用表连接实现的就用表连接,有些情况用表连接不能 或者不易实现的再选择子查询) 系统:缓存,执行计划技术手段 --1 wher ...
- Django如何重设Admin密码(转)
django的admin用户被我多动症一样的测试,给密码弄丢了,需要重置. 从数据库重置的可能性为0,因为django对于密码有保护策略.考虑从运行程序的地方进行重置: 1.在程序的文件夹下,执行 ...
- META-INF/MANIFEST.MF介绍
META-INF文件夹相当于一个信息包,目录中的文件和目录获得Java 2平台的认可与解释,用来配置应用程序.扩展程序.类加载器和服务.这个文件夹和其中的 MANIFEST.MF文件,在用jar打包时 ...
- CentOS下更改yum源
centos下下载工具为yum,对应的源在/etc/yum.repos.d/CentOS-Base.repo文件下,修改其URI中前面的网络地址即可
- RocketMQ原理分析 文章 精选【收集】
一. 推荐文章 1.以下来自OSChina的 mingxungu https://itzones.cn/ RocketMQ运维监控 RocketMQ刷盘策略 RocketMQ消息重试 RocketMQ ...
- P5357 【模板】AC自动机(二次加强版)
思路 这题可以同时作为AC自动机和SAM的模板啊喂 AC自动机 对T建出AC自动机,把S在上面匹配,然后记录每个点被经过的次数,最后统计一次即可(暴力跳fail的复杂度是不对的) SAM 对S建出SA ...