【零基础】使用Tensorflow实现神经网络
一、序言
前面已经逐步从单神经元慢慢“爬”到了神经网络并把常见的优化都逐个解析了,再往前走就是一些实际应用问题,所以在开始实际应用之前还得把“框架”翻出来,因为后面要做的工作需要我们将精力集中在业务而不是网络本身,所以使用框架可以减少非常多的工作量,有了前面自己实现神经网络的经验,现在理解框架的一些设置也比较容易了。本篇我们就使用比较常见的Tensorflow来重置一下前面的工作。
备注一下Tensorflow的安装:
1)安装python3.6,高版本不支持
2)pip install tensorflow即可
二、softmax
在开始前需要先说下这里使用的一个新的技术“softmax”,前面我们解决的问题是“从一堆图片里识别出数字是否是9”,这里使用softmax我们可以搞定更加高深一点的问题,比如:
“识别出图片中的数字是几”
这就厉害了,前面我们只能识别是不是,即”二分类“,这里借助softmax我们可以识别图片是数字几的概率,即”多分类“。
从技术上来说其实变化不大,神经网络整体结构不变,但是还记得我们之前神经网络中使用的”激活函数“不?一般最后一层使用sigmoid,意思是将输出转为0-1之间的区间值,表示为”是数字9“的概率是多少。这里使用softmax替代sigmoid,此外输出也不是一个数,而是10个数,比如:
[0.1, 0.2, 0.3, 0.7, 0.3, 0.1, 0.2, 0.3, 0.1, 0.2]
它的含义如下:
0的概率:10%
1的概率:20%
3的概率:30%
4的概率:70%
...
相应的输入的label自然也是十个数,比如:
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
它表示我们输入的图片是数字”4“,此种表示方式称为"one_hot_label"。此种输入与输出形式就是"多分类"的基础,此外我们使用的mnist数据集可以直接将label数据转为one hot形式,只需要"one_hot_label=True"。
除了输入输出形式不一样,softmax的传播函数和反向传播肯定与sigmoid不一样了,不过借助Tensorflow强大的功能这些我们都不需要操心啦。下面我们就逐步来实现一个基于Tensorflow的神经网络。
三、创建占位符placeholder
其实这里的输入x,y代表的分别是输入图片的向量大小784和label的向量大小10。tf是tensorflow的实体,这里tf.placeholder其实就是定义了两个空的数组:
(784, None)和(10, None)
placeholder得到的一维向量在后面的作用是"占位",占位的意思是在tensorflow构建神经网络时先把位置占好,真正运行时就按这个占位的样子往里面扔数据,比如X是784,输入的img也不管你啥形状了,反正就按784将输入截成一段一段的。
四、初始化参数w、b
整体上来说与前面初始化参数差不多,变化的除了使用tf来产生随机数,还将wGroup和bGroup合并为parameters(tf框架只给输入一个参数名)。
五、传播函数
这里tf.matmul()就是实现矩阵w与IN的乘积,再通过tf.add()实现加b。但这里的"传播函数"并没有真的做传播运算,它只是按神经网络的结构将各种运算”安排“好,运算到最后一层没有使用激活函数来计算结果,而是直接返回A。剩下的运算放到了”损失函数“中。
六、损失函数
这里的tf.transpose()只是一个转置操作,之所以不用A.T这种方式,其实可以想到,此处的A并不是一个矩阵,它是一长串计算的结果,只有当神经网络运行起来了A才会是一个矩阵。所以这里的A其实是一系列“运算”的合集,使用tf.transpose()就是叠加了一个转置运算。
tf.reduce_mean()在这里就是计算"损失"的,不过暂时也不是真的计算了,只是将这个运算"安排"好了,最终结果返回为costFun
七、完整实现
等等,还没有说"反向传播"呢?不要慌,这里慢慢来。
在model中,placeholder、initialize_parameters、forward、costCAL都是前面讲过的,只是"构建"神经网络计算的过程。
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(costFun)
这一句就是构建反向传播,其中AdamOptimizer表明使用Adam优化算法,minimize指明使用的损失函数,其实总结起来就是我们的反向传播需要使用Adam优化算法来使costFun构建的损失函数趋向于最小。
_ , cost = sess.run([optimizer, costFun], feed_dict={X: train_img, Y: train_label})
这一句就是真的运行网络了,feed_dict就是按前面"占位符"的形状将train_img和train_label输入到网络中,[optimizer, costFun]是指明网络的“向前传播+反向传播”和损失计算。
parameters = sess.run(parameters)
只是将优化后的参数按原样输出回来。
八、总结
本节只是简单将之前实现过的神经网络用Tensorflow再实现了一次,其次还引入了softmax将二分类扩展为多分类。Tensorflow是后面研究的基础,可能再开一章单独讲一讲。
本节完整实现代码请关注公众号“零基础爱学习”回复AI14获取。
【零基础】使用Tensorflow实现神经网络的更多相关文章
- Python学习宝典,Python400集让你成为从零基础到手写神经网络的Python大神
当您学完Python,你学到了什么? 开发网站! 或者, 基础语法要点.函数.面向对象编程.调试.IO编程.进程与线程.正则表达式... 当你学完Python,你可以干什么? 当程序员! 或者, 手写 ...
- kaggle赛题Digit Recognizer:利用TensorFlow搭建神经网络(附上K邻近算法模型预测)
一.前言 kaggle上有传统的手写数字识别mnist的赛题,通过分类算法,将图片数据进行识别.mnist数据集里面,包含了42000张手写数字0到9的图片,每张图片为28*28=784的像素,所以整 ...
- 【雕爷学编程】MicroPython动手做(03)——零基础学MaixPy之开机测试
1.几个知识点(1)MicroPython 是 Python 3 语言的精简高效实现 ,包括Python标准库的一小部分,并针对嵌入式微控制器(单片机)和受限制的环境进行了优化,它是Python延伸出 ...
- (转)一文学会用 Tensorflow 搭建神经网络
一文学会用 Tensorflow 搭建神经网络 本文转自:http://www.jianshu.com/p/e112012a4b2d 字数2259 阅读3168 评论8 喜欢11 cs224d-Day ...
- 编程零基础应当如何开始学习 Python?
提前说一下,这篇福利多多,别的不说,直接让你玩回最有手感的怀旧游戏,参数贴图很方便自己可以根据喜好修改哦. 本篇通过以下四块展开,提供大量资源对应. 选一个好版本 有没有看过<在下坂本,有何贵干 ...
- 作为比湖南还火的python网红,零基础要如何系统的开始学习呢?
Python(发音:英[?pa?θ?n],美[?pa?θɑ:n]),是一种面向对象.直译式电脑编程语言,也是一种功能强大的通用型语言,已经具有近二十年的发展历史,成熟且稳定.它包含了一组完善而且容易理 ...
- 一文学会用 Tensorflow 搭建神经网络
http://www.jianshu.com/p/e112012a4b2d 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码 ...
- 零基础学习Python数据分析
网上虽然有很多Python学习的教程,但是大多是围绕Python网页开发等展开.数据分析所需要的Python技能和网页开发等差别非常大,本人就是浪费了很多时间来看这些博客.书籍.所以就有了本文,希望能 ...
- (转)零基础入门深度学习(6) - 长短时记忆网络(LSTM)
无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就o ...
随机推荐
- python渗透库大集合
l Scapy:一款强大的交互式数据报分析工具,可用作发送.嗅探.解析和伪造网络数据包. l pypcap.Pcapy和pylibpcap:配合libpcap一起使用的数据包捕获模块 l libdne ...
- JavaScript,遍历,for
(for循环,for...in ,for...of ,forEach)(:for in总是得到数组,字符串的下标,而for of和forEach一样,是直接得到值) (forEach() 方法用于调用 ...
- webpack4 + ejs 构建多页应用
目录结构 ├─build webpack配置目录 │ ├─plugins.js │ ├─rules.js │ ├─transfromAssets.js //简单的一个插件,处理路径问题 │ └─web ...
- 第一篇:python简介
前言:作为对于python小白而言,我们需要知道什么是python,为什么学习python而不是其他编程语言,它相比于其他语言有什么优势,同时了解python 的执行操作过程又是怎么样的,它有哪些分类 ...
- c# 克隆来创建对象副本
- Linux命令——column
参考:Viewing Linux output in columns 功能 column命令把他的输入格式化多列显示.输入可以是文件,也可以是标准输入. 列优先,从左到右 显示的时候首先填满最左列,然 ...
- Linux命令——source
参考:What does 'source' do? 前言 当我们修改了/etc/profile文件,并想让它立刻生效,而不用重新登录,就可以使用source命令,如source /etc/profil ...
- Springboot简单集成ActiveMQ
Springboot简单集成ActiveMQ 消息发送者的实现 pom.xml添加依赖 <dependency> <groupId>org.springframework.bo ...
- main方法中参数"String[ ] args"详解
1.在编写完一个有主方法的java文件时,需要在cmd窗口中先编译此java文件(javac xxx.java),然后再运行(java xxx) 其实在运行java xxx的时候如果后面跟着参数用空格 ...
- Selenium常用API的使用java语言之8-模拟鼠标操作
通过前面例子了解到,可以使用click()来模拟鼠标的单击操作,现在的Web产品中提供了更丰富的鼠标交互方式, 例如鼠标右击.双击.悬停.甚至是鼠标拖动等功能.在WebDriver中,将这些关于鼠标操 ...