梯度下降法(BGD & SGD & Mini-batch SGD)
梯度下降法(Gradient Descent)
优化思想:用当前位置的负梯度方向作为搜索方向,亦即为当前位置下降最快的方向,也称“最速下降法”。越接近目标值时,步长越小,下降越慢。
如下图所示,梯度下降不一定能找到全局最优解,可能寻找到的是局部最优解。(当损失函数是凸函数时,梯度下降得到的解一定是全局最优解,因为凸函数的极小值即为最小值)
梯度下降法批量梯度下降法(Batch Gradient Descent,BGD):在更新参数时,BGD根据batch中的所有样本对参数进行更新。
θ为参数,x为每个样本的n个特征值
为了简化表示,增加特征x_0=1
损失函数J,m为一个batch中的样本数
参数更新,α为步长
上式展开即为,其中α和1/m均为常数,可用一个常数表示随机梯度下降法(Stochastic Gradient Descent,SGD):和BGD的原理类似,区别在于每次随机选取一个样本j求梯度。
对于训练速度来说,SGD每次仅仅采用一个样本来迭代,训练速度很快,而BGD在样本量很大的时候,训练速度不能让人满意。
对于准确度来说,SGD仅仅用一个样本决定梯度方向,导致解很有可能不是最优。
对于收敛速度来说,由于SGD一次迭代一个样本,导致迭代方向变化很大,不能很快的收敛到局部最优解。
SGD小批量梯度下降法(Mini-batch Gradient Desent,也称Mini-batch SGD):BGD和SGD二者的折中法,对于m个样本,选取x个子样本进行迭代,且1<x<m。

(1)选择n个训练样本(n<m,m为总训练集样本数)(即batchsize = n,样本总数为m,随机的思想在于每个epoch之前,随机打乱样本顺序,顺序选取n个样本作为batch)
(2)在这n个样本中进行n次迭代,每次使用1个样本
(3)对n次迭代得出的n个gradient进行加权平均再并求和,作为这一次mini-batch下降梯度
(4)不断在训练集中重复以上步骤,直到收敛。
梯度下降法(BGD & SGD & Mini-batch SGD)的更多相关文章
- 1. 批量梯度下降法BGD 2. 随机梯度下降法SGD 3. 小批量梯度下降法MBGD
排版也是醉了见原文:http://www.cnblogs.com/maybe2030/p/5089753.html 在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度 ...
- 梯度下降法(BGD、SGD)、牛顿法、拟牛顿法(DFP、BFGS)、共轭梯度法
一.梯度下降法 梯度:如果函数是一维的变量,则梯度就是导数的方向: 如果是大于一维的,梯度就是在这个点的法向量,并指向数值更高的等值线,这就是为什么求最小值的时候要用负梯度 梯度下降法(Gr ...
- 随机梯度下降法(Stochastic gradient descent, SGD)
BGD(Batch gradient descent)批量梯度下降法:每次迭代使用所有的样本(样本量小) Mold 一直在更新 SGD(Stochastic gradientdescent)随机 ...
- [Machine Learning] 梯度下降法的三种形式BGD、SGD以及MBGD
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点. 下面我们以线性回归算法来对三种梯度下降法进行比较. ...
- 梯度下降法的三种形式BGD、SGD以及MBGD
https://www.cnblogs.com/maybe2030/p/5089753.html 阅读目录 1. 批量梯度下降法BGD 2. 随机梯度下降法SGD 3. 小批量梯度下降法MBGD 4. ...
- 梯度下降法的三种形式-BGD、SGD、MBGD
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点. 下面我们以线性回归算法来对三种梯度下降法进行比较. ...
- 线性回归(最小二乘法、批量梯度下降法、随机梯度下降法、局部加权线性回归) C++
We turn next to the task of finding a weight vector w which minimizes the chosen function E(w). Beca ...
- 机器学习中梯度下降法原理及用其解决线性回归问题的C语言实现
本文讲梯度下降(Gradient Descent)前先看看利用梯度下降法进行监督学习(例如分类.回归等)的一般步骤: 1, 定义损失函数(Loss Function) 2, 信息流forward pr ...
- ubuntu之路——day8.1 深度学习优化算法之mini-batch梯度下降法
所谓Mini-batch梯度下降法就是划分训练集和测试集为等分的数个子集,比如原来有500W个样本,将其划分为5000个baby batch,每个子集中有1000个样本,然后每次对一个mini-bat ...
随机推荐
- Mysql 中完善的帮助命令
Mysql 中完善的帮助命令 Mysql 中的帮助系统很完善,很多操作都可以通过命令行直接获得帮助,如下示例: Mysql 命令行帮助 [root@mysql1 mydata1]# mysql -S ...
- C#-MailHelper
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- 理解serverless无服务
理解serverless无服务 阅读目录 一:什么是serverless无服务? 二:与传统模式架构区别? 三:serverless优缺点? 四:使用serverless的应用场景有哪些? 回到顶部 ...
- 个性化召回算法实践(一)——CF算法
协同过滤推荐(Collaborative Filtering Recommendation)主要包括基于用户的协同过滤算法与基于物品的协同过滤算法. 下面,以movielens数据集为例,分别实践这两 ...
- 看完100篇Python技术精华文章,平均涨薪30%!
一个以技术为立身根基的教育机构做出来的微信号,干货程度会有多高? 马哥Linux运维公众号运营五年,从一开始的定位就是给技术人分享加薪干货的地方.这五年里,公众号运营最重的任务就是做内容.内容并不好做 ...
- C++——宏观把控
跟看所有的书一样,我们都要求第一遍泛读,宏观把控书本内容,C++依旧如此进行.看到前面这几章的时候感觉非常熟悉,因为能让我联想到很多以前学习的VB.C#等的知识,感觉轻松很多,原来我已经学过了很多东西 ...
- matlab(7) Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg
Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg ex2_reg.m文件中的部分内容 %% == ...
- Python3入门与进阶【笔记】
1.二.八.十六进制转十进制:int('10', base=2).int('10', base=8).int('10', base=16): 2.八.十.十六进制转二进制:bin(0o+xxx).bi ...
- JSP中9大内置对象类型
JSP中九大内置对象为: request 请求对象 类型 javax.servlet.ServletRequest 作用域 Requ ...
- 数据库学习之七--视图(View)
一.定义 视图:指计算机数据库中的一个临时虚拟表,其内容由查询定义:同真实的表一样,视图包含一系列带有名称的列和行数据.但是,视图并不在数据库中以存储的数据值集形式存在. 二.优点 1. 优点: a. ...