练习一:假设你获取到了2017年内地电影票房前20的电影(列表a)和电影票房数据(列表b),那么如何更加直观的展示该数据?

a = ["战狼2","速度与激情8","功夫瑜伽","西游伏妖篇","变形金刚5:最后的骑士","摔跤吧!爸爸","加勒比海盗5:死无对证","金刚:骷髅岛","极限特工:终极回归","生化危机6:终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:殊死一战","蜘蛛侠:英雄归来","悟空传","银河护卫队2","情圣","新木乃伊",]

b = [56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23]
 from matplotlib import pyplot as plt
import matplotlib """绘制条形图"""
font = {'family': 'MicroSoft YaHei'}
matplotlib.rc('font', **font) # 使支持中文 x = ["战狼2","速度与激情8","功夫瑜伽","西游伏妖篇","变形金刚5:最后的骑士","摔跤吧!爸爸","加勒比海盗5:死无对证","金刚:骷髅岛","极限特工:终极回归","生化危机6:终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:殊死一战","蜘蛛侠:英雄归来","悟空传","银河护卫队2","情圣","新木乃伊",] y = [56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23] plt.figure(figsize=(20, 8), dpi=80) # 设置图形大小 # plt.bar(range(len(x)), y, width=0.3) # 绘制条形图,线条宽度
plt.barh(range(len(x)), y, height=0.3, color='orange') # 绘制横着的条形图,横着的用height控制线条宽度
# 设置字符串到x轴
plt.yticks(range(len(x)),x) plt.grid(alpha=0.3) # 添加网格
plt.ylabel('电影名称')
plt.xlabel('票房')
plt.title('票房前20的电影') plt.show()

练习二:假设知道了列表a中电影分别在2017-09-14(b_14),2017-09-15(b_15),2017-09-16(b_16)三天的票房,为了展示列表中电影本身的票房以及同其它电影的数据对比情况,应该如何更加直观的呈现数据?

a = ["猩球崛起3:终极之战","敦刻尔克","蜘蛛侠:英雄归来","战狼2"]
b_16 = [15746,312,4497,319]
b_15 = [12357,156,2045,168]
b_14 = [2358,399,2358,362]
 from matplotlib import pyplot as plt
import matplotlib font = {'family': 'MicroSoft YaHei'}
matplotlib.rc('font', **font) # 使支持中文 a = ["猩球崛起3:终极之战","敦刻尔克","蜘蛛侠:英雄归来","战狼2"]
b_16 = [15746,312,4497,319]
b_15 = [12357,156,2045,168]
b_14 = [2358,399,2358,362] bar_width = 0.2 # 绘制多个条形图,这里不能大于0.3
# 让后两个条形,向后移动一个bar_width
x_14 = list(range(len(a)))
x_15 = [i+bar_width for i in x_14]
x_16 = [i+2*bar_width for i in x_14] plt.figure(figsize=(20, 8), dpi=80) # 设置图形大小
plt.xticks(x_15, a) # 设置x轴刻度 plt.bar(range(len(a)), b_14, width=bar_width, label='9月14日')
plt.bar(x_15, b_15, width=bar_width, label='9月15日')
plt.bar(x_16, b_16, width=bar_width, label='9月16日') plt.legend() # 设置图例
plt.xlabel('电影名称')
plt.ylabel('票房/万')
plt.title('对比票房')
plt.savefig('./02.png')
plt.show()

 
 

matplotlib库绘制条形图的更多相关文章

  1. 使用matplotlib库绘制函数图

    函数如下: z = x^2 * y / (x^4 +y^2) 代码如下: import numpy as np import matplotlib.pyplot as plt import mpl_t ...

  2. matplotlib库绘制散点图

    假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找出气温随时间(天)变化的某种规律? a = [11,17,16,11,12,11,12,6,6 ...

  3. python 运用numpy库与matplotlib库绘制数据图

    代码一 import numpy as np import matplotlib.pyplot as plt x=np.linspace(0,6,100) y=np.cos(2*np.pi*x)*np ...

  4. Python的工具包[2] -> matplotlib图像绘制 -> matplotlib 库及使用总结

    matplotlib图像绘制 / matplotlib image description  目录 关于matplotlib matplotlib库 补充内容 Figure和AxesSubplot的生 ...

  5. 用python的matplotlib和numpy库绘制股票K线均线和成交量的整合效果(含量化验证交易策略代码)

    在用python的matplotlib和numpy库绘制股票K线均线的整合效果(含从网络接口爬取数据和验证交易策略代码)一文里,我讲述了通过爬虫接口得到股票数据并绘制出K线均线图形的方式,在本文里,将 ...

  6. 3.matplotlib绘制条形图

    plt.bar() # coding=utf-8 from matplotlib import pyplot as plt from matplotlib import font_manager my ...

  7. matplotlib如何绘制直方图、条形图和饼图

    1 绘制直方图: import matplotlib.pyplot as plt import numpy as np import matplotlib def hist1(): # 设置matpl ...

  8. NumPy Matplotlib库

    NumPy - Matplotlib Matplotlib 是 Python 的绘图库. 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案. 它也可以和图形工具包一起使用,如 ...

  9. Matplotlib库常用函数大全

    Python之Matplotlib库常用函数大全(含注释) plt.savefig(‘test’, dpi = 600) :将绘制的图画保存成png格式,命名为 test plt.ylabel(‘Gr ...

随机推荐

  1. java 面试心得总结-BAT、网易

    http://blog.csdn.net/sinat_26812289/article/details/50898693

  2. poj1275

    Cashier Employment POJ - 1275 A supermarket in Tehran is open 24 hours a day every day and needs a n ...

  3. Java并发之同步工具类

    1. CountDownlatch(计数器) 描述: 一个同步工具类,允许一个或多个线程等待其它线程完成操作 类图 通过指定的count值进行初始化,调用await方法的线程将被阻塞,直到count值 ...

  4. 监控redis性能

    注存数据,取数据的功能,即 set,get,非常适合用作缓存服务器,降低后端数据库压力.有时,想确认下数据是否是从 redis 里读的,以及 redis 是怎么取得数据,这时就可以使用 monitor ...

  5. 邻居子系统 之 状态定时器回调neigh_timer_handler

    概述 在分配邻居子系统之后,会设置定时器来处理那些需要定时器处理的状态,定时器回调函数为neigh_timer_handler:函数会根据状态机变换规则对状态进行切换,切换状态后,如果需要更新输出函数 ...

  6. LeetCode 复原IP地址(探索字节跳动)

    题目描述 给定一个只包含数字的字符串,复原它并返回所有可能的 IP 地址格式. 示例: 输入: "25525511135" 输出: ["255.255.11.135&qu ...

  7. postman设置环境变量,实现一套接口根据选择的环境去请求不同的url

    一个系统,有本地,开发,测试,生产等不同的环境,如果写不同的url配置多套会比较麻烦,可以设置不同的环境实现不同的url之间的切换.配置之后如下: 第一步: 第二步: 添加环境变量 ps::不同的环境 ...

  8. 阿里云Ubuntu 16 FTP安装配置注意事项

    1. 开放端口设置 阿里云控制台添加"安全组规则". 1) 21: FTP端口; 2) 15000~15100: 对应vsftpd.conf 自定义配置. (重要!) pasv_e ...

  9. 信息学竞赛一本通提高版AC题解—例题1.1活动安排

    书中代码有误.书中为sort(a+1,a+n+1,Cmp). // // Created by yuxi on 19-1-13. // /* * * <信息学竞赛一本通-提高版>全部AC解 ...

  10. Vue UI组件 开发框架 服务端 辅助工具 应用实例 Demo示例

    Vue UI组件 开发框架 服务端 辅助工具 应用实例 Demo示例 element ★11612 - 饿了么出品的Vue2的web UI工具套件 Vux ★7503 - 基于Vue和WeUI的组件库 ...