给定 $n$ 个两两不同的正整数 $a_1, a_2, \dots, a_n$,$a_i < 2^k$ 。

Problem 1(经典问题)

求 $a_i \xor a_j$ 的最大值,$ 1\le i, j \le n $ 。

解法

字典树

Problem 2

从 $n$ 个数中任选出一些数,求异或和的最大值。

Let the length of a number be the number of digits needed to write it out in binary, excluding any leading zeros.

Clearly, if all the input numbers had a different length, the problem would have a trivial solution: just iterate over the input numbers in decreasing order by length, choosing each number if and only if XORing it with the maximum so far increases the maximum, i.e., if and only if its leading bit is not set in the current maximum.

The tricky part is when the input may contain multiple numbers with the same length, since then it's not obvious which of them we should choose to include in the XOR. What we'd like to do is reduce the input list into an equivalent form that doesn't contain more than one number of the same length.

Conveniently, this is exactly what Gaussian elimination does: it transforms a list of vectors into another list of vectors which have strictly decreasing length, as defined above (that is, into a list which is in echelon form), but which spans the same linear subspace.

The reason this linear algebra algorithm is relevant here is that binary numbers satisfy the axioms of a vector space over the finite field of two elements, a.k.a. GF(2), with the number viewed as vectors of bits, and with XOR as the vector addition operation. (We also need a scalar multiplication operation to satisfy the axioms, but that's trivial, since the only scalars in GF(2) are $1$ and $0$.)

The linear subspace spanned by a set of bit vectors (i.e. binary numbers) over GF(2) is then simply the set of vectors obtainable by XORing a subset of them. Thus, if we can use Gaussian elimination to convert our input list into another one, which spans the same subspace, we can solve the problem using this other list and know that it gives the same solution as for the original problem.

Thus, we need to implement Gaussian elimination over GF(2).

// a[i] < (1LL << 60)
long long max_xor_sum(vector<long long> a, int n) {
long long res = 0;
int index = 0;
for (int column = 59; column >= 0; --column) {
long long mask = 1LL << column;
for (int row = index; row < n; ++row) {
if (a[row] & mask) {
swap(a[row], a[index]);
for (int row_ = row + 1; row_ < n; ++row_) {
if (a[row_] & mask) {
a[row_] ^= a[index];
}
}
if ((res & mask) == 0) {
res ^= a[index];
}
++index;
break;
}
}
}
return res;
}

References

https://math.stackexchange.com/a/1054206/538611

Problem 3

AtCoder Beginner Contest 141 Task F Xor Sum 3

Problem Statment

We have $N$ non-negative integers: $A_1, A_2, \dots, A_n$.

Consider painting at least one and at most $N − 1$ integers among them in red, and painting the rest in blue.

Let the beauty of the painting be the XOR of the integers painted in red, plus the XOR of the integers painted in blue.

Find the maximum possible beauty of the painting.

Constraints

  • All values in input are integers.
  • $2 \le N \le 10^5$
  • $0 \le A_i < 2^{60} \ (1 \leq i \leq N)$

解法

此问题可转化为 Problem 2。

若第 $i$ 个二进制位为 1 的数共有奇数个,则不论如何划分,两部分的异或和在第 $i$ 位上必然一个是 1,一个是 0。

我们只需要考虑共有偶数个 1 的那些二进制位,在这些位上,不论如何划分,两部分的异或和一定是相等的,因此我们的目标是使这些位上的异或和最大,于是问题转化为 Problem 2。

代码 https://atcoder.jp/contests/abc141/submissions/7551333

Maximum XOR Sum 系列问题的更多相关文章

  1. 二叉树系列 - 二叉树里的最长路径 例 [LeetCode] Binary Tree Maximum Path Sum

    题目: Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start ...

  2. Light OJ 1272 Maximum Subset Sum 高斯消元 最大XOR值

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011686226/article/details/32337735 题目来源:problem=12 ...

  3. [LeetCode] Binary Tree Maximum Path Sum 求二叉树的最大路径和

    Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...

  4. [leetcode]Binary Tree Maximum Path Sum

    Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...

  5. LeetCode(124) Binary Tree Maximum Path Sum

    题目 Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequen ...

  6. LeetCode124:Binary Tree Maximum Path Sum

    题目: Given a binary tree, find the maximum path sum. The path may start and end at any node in the tr ...

  7. leetcode 124. Binary Tree Maximum Path Sum

    Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequence ...

  8. [lintcode] Binary Tree Maximum Path Sum II

    Given a binary tree, find the maximum path sum from root. The path may end at any node in the tree a ...

  9. 【leetcode】Binary Tree Maximum Path Sum

    Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...

随机推荐

  1. flask框架(三):flask配置文件

    flask中的配置文件是一个flask.config.Config对象(继承字典),默认配置为: { 'DEBUG': get_debug_flag(default=False), 是否开启Debug ...

  2. numpy中np.max() 和 np.maximum() 的区别

    np.max(a, axis=None, out=None, keepdims=False) # 接收一个参数a # 取a 在 axis方向上的最大值 np.maximum(x, y) # 接收两个参 ...

  3. CodeForces–833B--The Bakery(线段树&&DP)

    B. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  4. CodeForces 724C Ray Tracing(碰撞类,扩展gcd)

    又一次遇到了碰撞类的题目,还是扩展gcd和同余模方程.上次博客的链接在这:http://www.cnblogs.com/zzyDS/p/5874440.html. 现在干脆解同余模直接按照套路来吧,如 ...

  5. linux shell 值coredump suid_dumpable和 gdb解析coredump文件

    可以设置产生coredump文件,设置dump文件命名非格式,生成dump文件的路径: linux # set suid_dumpable on if [ -e /proc/sys/kernel/su ...

  6. TCP输入 之 tcp_rcv_established

    概述 tcp_rcv_established用于处理已连接状态下的输入,处理过程根据首部预测字段分为快速路径和慢速路径: 1. 在快路中,对是有有数据负荷进行不同处理: (1) 若无数据,则处理输入a ...

  7. Java-JDK-windows和linux版-百度云下载

    链接: https://pan.baidu.com/s/15vjk4PNzuItd5vHJ6deq3Q 关注以下公众号,回复[9757],获取提取码 linux:jdk-8u221-linux-x64 ...

  8. ORA-00600: internal error code, arguments: [kqludp2], [0x08D226918], [0], [], [], [], [], [], [], [], [], []

    问题描述: 1)report builder + xml publisher 做的报表,报表提交后报黄色警告,输出文件是XML格式,日志提示如下: +--------- 1) POST-PROCESS ...

  9. 互操作性 a C++ library which enables seamless interoperability between C++ and the Python programming language

    https://zh.wikipedia.org/wiki/互操作性 就软件而言,互操作性——这条术语用来描述的是不同的程序(programs)借助于同一套交换格式(exchange formats) ...

  10. mysql数据库基本操作sql语言

    mysql的启动与关闭 启动 /etc/init.d/mysql start 多实例使用自建脚本启动 2种关闭数据库方法 mysqladmin -uroot -p密码 shutdown #优雅关闭/e ...