大意: 给定01串, 两人轮流操作, Tokitsukaze先手. 每次操作可以选择长为$k$的区间, 全部替换为$0$或$1$, 若替换后同色则赢. 求最后结果.

先判断第一步是否能直接赢, 不能的话若所有后继都是必败则必败, 否则平局.

正确性很显然, 因为一次操作不能直接赢的话, 只要模仿对手操作一定能平局.

那么问题就转化为判断一步操作后是否能赢.

假设$0$的最大范围为$[L[0],R[0]]$,$1$的最大范围为$[L[1],R[1]]$, 那么只要操作前$R[0]-L[0]+1\le k$或$R[1]-L[1]+1\le k$那么一定必胜.

然后用带撤销的线段树枚举所有后继模拟即可.

#include <iostream>
#include <cstdio>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
using namespace std; const int N = 1e6+10;
int n,k,clk,tim[N<<2];
char s[N];
struct _ {
int L[2],R[2];
void upd(int v, int l, int r) {
L[v]=l,R[v]=r;
L[!v]=1e9,R[!v]=-1e9;
}
_ operator + (const _ & rhs) const {
_ ret;
REP(i,0,1) {
ret.L[i]=min(L[i],rhs.L[i]);
ret.R[i]=max(R[i],rhs.R[i]);
}
return ret;
}
} tr[N<<2],tmp[N<<2]; void build(int o, int l, int r) {
if (l==r) return tmp[o].upd(s[l]=='1',l,r);
build(ls),build(rs);
tmp[o]=tmp[lc]+tmp[rc];
}
void upd(int o) {
if (tim[o]!=clk) tr[o]=tmp[o],tim[o]=clk;
}
void update(int o, int l, int r, int ql, int qr, int v) {
upd(o);
if (ql<=l&&r<=qr) return tr[o].upd(v,l,r);
else {
upd(lc),upd(rc);
if (mid>=ql) update(ls,ql,qr,v);
if (mid<qr) update(rs,ql,qr,v);
tr[o]=tr[lc]+tr[rc];
}
}
int chk() {
REP(i,0,1) if (tr[1].R[i]-tr[1].L[i]+1<=k) return 1;
return 0;
} int work() {
scanf("%d%d%s", &n, &k, s+1);
build(1,1,n);
++clk,upd(1);
if (chk()) return 1;
int cnt = 0;
REP(i,1,n-k+1) {
int f = 0;
++clk, update(1,1,n,i,i+k-1,1), f += chk();
++clk, update(1,1,n,i,i+k-1,0), f += chk();
if (f==2) ++cnt;
}
return cnt==n-k+1?0:-1;
} int main() {
int t = work();
if (t==1) puts("tokitsukaze");
else if (t==-1) puts("once again");
else puts("quailty");
}

Tokitsukaze and Duel CodeForces - 1191E (博弈论)的更多相关文章

  1. E - Tokitsukaze and Duel CodeForces - 1190C (博弈 + 窗体移动)

    "Duel!" Betting on the lovely princess Claris, the duel between Tokitsukaze and Quailty ha ...

  2. [Codeforces 1191D] Tokitsukaze, CSL and Stone Game(博弈论)

    [Codeforces 1191D] Tokitsukaze, CSL and Stone Game(博弈论) 题面 有n堆石子,两个人轮流取石子,一次只能从某堆里取一颗.如果某个人取的时候已经没有石 ...

  3. Codeforces - 1191E - Tokitsukaze and Duel - 博弈论 - 尺取

    https://codeforc.es/contest/1191/problem/E 参考自:http://www.mamicode.com/info-detail-2726030.html 和官方题 ...

  4. Codeforces Round #573 (Div. 2) E. Tokitsukaze and Duel (博弈)

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  5. Codeforces 1190C. Tokitsukaze and Duel

    传送门 注意到后手可以模仿先手的操作,那么如果一回合之内没法决定胜负则一定 $\text{once again!}$ 考虑如何判断一回合内能否决定胜负 首先如果最左边和最右的 $0$ 或 $1$ 距离 ...

  6. Codeforces 1190C Tokitsukaze and Duel game

    题意:有一个长为n的01串,两个人轮流操作,每个人可以把某个长度为m的区间变成相同颜色,谁在操作后整个串颜色相同就赢了.问最后是谁赢?(有可能平局) 思路:容易发现,如果第一个人不能一击必胜,那么他就 ...

  7. C. Tokitsukaze and Duel 前缀维护

    枚举每一个连续的K的第一个位置,如果是先手胜利,那么前[1 , i-1 ]和[ i+k , n ]区间要么全是0,要么全是1 如果能够平局,那么肯定是[1,i-1],以及[ i+k , n]中有两种情 ...

  8. Financiers Game CodeForces - 737D (博弈论)

    直接暴力区间DP的话是$O(n^3)$, 关键注意到每步走的距离差不超过1, 所以差最大是$O(\sqrt{n})$的, 所以实际上有用的状态是$O(n^2)$的, 可以通过.

  9. Future Failure CodeForces - 838C (博弈论,子集卷积)

    大意: 两人轮流操作一个长$n$, 只含前$k$种小写字母的串, 每次操作删除一个字符或者将整个串重排, 每次操作后得到的串不能和之前出现过的串相同, 求多少种串能使先手必胜. 找下规律发现$n$为奇 ...

随机推荐

  1. 简易的CRM系统案例之Struts2+JSP+MySQL版本

    对简易的CRM系统案例之Servlet+Jsp+MySQL版本改进 Servlet优化为Struts2 学习 <?xml version="1.0" encoding=&qu ...

  2. 001-poi-excel-基础、单元格使用操作

    一.概述 Apache POI是Apache软件基金会的开源项目,POI提供API给Java程序对Microsoft Office格式档案读和写的功能. .NET的开发人员则可以利用NPOI (POI ...

  3. 123457123456#0#-----com.yuming.FromPuzzleGame01--前拼后广--宝宝农场拼图cym

    com.yuming.FromPuzzleGame01--前拼后广--宝宝农场拼图cym

  4. mysl创建用户+授权+增、删、改查

    1.mysql的root用户无法给普通用户授权问题处理 update mysql.user set Grant_priv='Y' where User='root' and Host='%': flu ...

  5. iframe重定向让父页面跳转

    情景描述 我们在使用一些后台程序的html模板(比如H-ui)的时候,这些html前端程序是iframe版的, 也就是说在使用的时候,每当我点击左侧导航栏的一个按钮,在右侧就会弹出一个菜单栏,在显示的 ...

  6. SQl 2008 如何清除登陆过的服务器名称

    C:\Users\Administrator\AppData\Roaming\Microsoft\Microsoft SQL Server\100\Tools\Shell\SqlStudio.bin ...

  7. python面向对象之类属性,实例属性

    python中的属性分为类属性和实例属性,之前已经说过一些,这里主要是对类属性与实例属性的增删改查 首先是对类属性的增删改查,下面这个是对类属性的修改,在书写类时,已经对类属性occupation进行 ...

  8. 浅出讲解:php的socket通信

    原文地址:https://www.cnblogs.com/aipiaoborensheng/p/6708963.html 对TCP/IP.UDP.Socket编程这些词你不会很陌生吧?随着网络技术的发 ...

  9. Win10利用CodeBlocks搭建Objective-C开发环境(二)

    工程文件已经建好:但此时会发现main.m文件为灰色,且无法点击,此时需右键点击main.m文件,在option选项中勾选 compile file和 link file选项. 设置完成后,双击mai ...

  10. 【miscellaneous】理解Gstreamer架构

    本文给出了Gstreamer的总体设计.通过阅读本文可以了解Gstreamer的内部工作原理.本文编译自gstreamer源码中的文档,原文在源码中的位置是/gstreamer/docs/design ...