【概率论】4-6:协方差和相关性(Covariance and Correlation)
title: 【概率论】4-6:协方差和相关性(Covariance and Correlation)
categories:
- Mathematic
- Probability
keywords:
- Covariance
- Correlation
- Properties of Covariance and Correlation
toc: true
date: 2018-03-26 10:44:07
Abstract: 本文介绍协方差和相关性的基础知识,以及部分性质
Keywords: Covariance,Correlation,Properties of Covariance and Correlation
开篇废话
概率论基础知识,基础工具已经进入到后半部分了,接下来后面就是对特定分布的研究和分析了,使用的工具就是我们已经介绍过的这些知识,融汇贯通是所有知识学习的唯一考量,掌握的知识点如果不能融入体系,一个月后就相当于没学过,但是成体系的知识不同,只要有一个根节点,就能联系到整个一颗知识树。
一杯敬朝阳,一杯敬月光
我们前面几个重要的数字特征针对的基本都是单一随机变量,我们很清楚,我们在实际操作中面对的基本都是多随机变量的联合分布,那么我们接下来就想研究下,两个或者多个随机变量之间是怎么互相影响的。
协方差(Covariance),相关性(Correlation)是度量随机变量间独立性的一种数字特征,但是必须注意,这两个数字特征度量的是随机变量之间的 线性相关程度 ,这里要好好注意一下!线性相关程度。
注意,协方差和相关性,只刻画线性相关程度!
Covariance
当我们将随机变量从一个扩展到多个,前面提到的期望,方差,中值等这些针对单个随机变量的数字特征就只能刻画联合分布的某一边缘分布的性质了。所以我们提出了新的数字特征,这个数字特征能描述两个随机变量之间有没有变化上的关系,比如他们经常同时变大或者变小,或者总是一个变大另一个变小,这种关联的关系。
通过这种数字特征,我们能够在求出若干个这种变量的方差,以及通过已经得到的几个随机变量的结果来预测其他几个。如果确定了这几个随机变量之间的关联,这些似乎都是可行的。
Definition Covariance. Let XXX and YYY be random variables having finite means.Let E(X)=μXE(X)=\mu_XE(X)=μX and E(Y)=μYE(Y)=\mu_YE(Y)=μY The covariance of X and Y,which is denoted by Cov(X,Y)Cov(X,Y)Cov(X,Y) ,is defined as
Cov(X,Y)=E[(X−μX)(Y−μY)]
Cov(X,Y)=E[(X-\mu_X)(Y-\mu_Y)]
Cov(X,Y)=E[(X−μX)(Y−μY)]
if the expectation exists.
没错我们本章就是在研究期望,所以,本章所有的数字特征都来自期望,期望的存在性也左右了这些数字特征的存在性。
如果 X 和Y的都有有限的方差,那么期望存在,并且 Cov(X,Y)Cov(X,Y)Cov(X,Y) 存在且有限,但是正负不受限制,可以是正数,负数,0
举个
【概率论】4-6:协方差和相关性(Covariance and Correlation)的更多相关文章
- 利用GCTA工具计算复杂性状/特征(Complex Trait)的遗传相关性(genetic correlation)
如文章"Genome-wide Complex Trait Analysis(GCTA)-全基因组复杂性状分析"中介绍的GCTA,是一款基于全基因组关联分析发展的分析工具,除了计算 ...
- 学习笔记DL008:概率论,随机变量,概率分布,边缘概率,条件概率,期望、方差、协方差
概率和信息论. 概率论,表示不确定性声明数学框架.提供量化不确定性方法,提供导出新不确定性声明(statement)公理.人工智能领域,概率法则,AI系统推理,设计算法计算概率论导出表达式.概率和统计 ...
- 协方差cov
摘录wiki如下(红色字体是特别标注的部分): http://zh.wikipedia.org/wiki/%E5%8D%8F%E6%96%B9%E5%B7%AE 协方差 协方差(Covariance) ...
- 统计学三大相关性系数:pearson,spearman,kendall
目录 person correlation coefficient(皮尔森相关性系数-r) spearman correlation coefficient(斯皮尔曼相关性系数-p) kendall ...
- 相关性不一定等于因果性:从 Yule-Simpson’s Paradox 讲起
1. 两件事伴随发生,不代表他们之间有因果关系 - 从一些荒诞相关性案例说起 在日常生活和数据分析中,我们可以得到大量相关性的结论,例如: 输入X变量,有98%置信度得到Y变量 只要努力,就能成功 只 ...
- ML一些简单的资源
参考文献及推荐阅读 维基百科,http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm: 机器学习中的相似性度量,http://www.cnb ...
- ML二:NNSearch数据结构--二叉树
wiki百科:http://zh.wikipedia.org/wiki/%E5%86%B3%E7%AD%96%E6%A0%91%E5%AD%A6%E4%B9%A0 opencv学习笔记--二杈决策树: ...
- Python之Pandas库学习(一):简介
官方文档 1. 安装Pandas windos下cmd:pip install pandas 导入pandas包:import pandas as pd 2. Series对象 带索引的一维数组 创建 ...
- Other-Website-Contents.md
title: 本站目录 categories: Other sticky: 10 toc: true keywords: 机器学习基础 深度学习基础 人工智能数学知识 机器学习入门 date: 999 ...
随机推荐
- hdu 6377 度度熊看球赛 (dp)
大意: $n$对情侣, $2n$个座位, 对于一个方案, 若$k$对情侣相邻, 则喧闹值增加$D^k$, 求喧闹值期望. 跟CF 840C一样, 设$dp[i][j]$为$i$个人, 有$j$对情侣相 ...
- Unity UGUI动态生成控件
一. 首先你得先清楚RectTransform组件的一些程序控制 1. 先得到UGUI控件上面的RectTransform组件 RectTransform rtr = gameObject.GetCo ...
- 巧用Ajax的beforeSend 提高用户体验--防止重复数据
巧用Ajax的beforeSend 提高用户体验 jQuery是经常使用的一个开源js框架,其中的$.ajax请求中有一个beforeSend方法,用于在向服务器发送请求前执行一些动作.具体可参考jQ ...
- Android Studio 代码页跳界面 /java和XML快速切换技巧
https://www.cnblogs.com/simadi/p/6698666.html?utm_source=itdadao&utm_medium=referral 今天又发现了一个And ...
- 微软发布云端基因服务:推动AI驱动的精准医疗
微软发布云端基因服务:推动AI驱动的精准医疗 2018年03月07日 00:00:00 微软研究院AI头条 阅读数:117 版权声明:本文为博主原创文章,未经博主允许不得转载. https:// ...
- [书籍翻译] 《JavaScript并发编程》第七章 抽取并发逻辑
本文是我翻译<JavaScript Concurrency>书籍的第七章 抽取并发逻辑,该书主要以Promises.Generator.Web workers等技术来讲解JavaScrip ...
- windows使用msi包安装mysql8.0.12
1.前言 利用windows提供的二进制分发包(msi)安装是非常简单的,只要根据提示安装就可以了,和安装普通软件没有什么区别.但是如果想在安装的时候就把规划的配置好,是需要看懂每个步骤到底做什么用, ...
- Linux学习笔记(八)Linux常用命令:用户登录查看命令
一.查看登录用户信息 w [用户名] 二.Who who 三.查询当前登录和过去登陆的用户信息 last 四.查看所有用户最后一次登录时间 lastlog
- [Python] Codecombat攻略 远边的森林 Forest (1-40关)
首页:https://cn.codecombat.com/play语言:Python 第二界面:远边的森林Forest(40关)时间:2-6小时内容:if/else.关系操作符.对象属性.处理输入网页 ...
- jade过滤器
以上语法基本讲完了jade的语法,然后在jade里面并不仅仅局限于使用jade语法,同样可以使用其他的插件语言,这种机制在jade里面称为filter,在jade里面加入过滤器用冒号 markdown ...