实例一:

teacher.log

http://bigdata.baidu.cn/zhangsan
http://bigdata.baidu.cn/zhangsan
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/wangwu
http://bigdata.baidu.cn/wangwu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/wangwu
http://bigdata.baidu.cn/wangwu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/wangwu
http://bigdata.baidu.cn/wangwu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://php.baidu.cn/laoli
http://php.baidu.cn/laoliu
http://php.baidu.cn/laoli
http://php.baidu.cn/laoli

全局topn  组内topn

代码:

package dayo1

import java.net.URL

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object teacher2 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf ()
.setAppName ( this.getClass.getSimpleName )
.setMaster ( "local[1]" ) val sc = new SparkContext ( conf ) val lines = sc.textFile ( "E:\\teacher.log" ) val overAll: RDD[((String, String), Int)] = lines.map ( tp => {
val teacher: String = tp.split ( "/" ).last
val host = new URL ( tp ).getHost
val subject = host.substring ( , host.indexOf ( "." ) )
((teacher, subject), )
} )
//所有科目和老师的前三
val topOverAll = overAll.reduceByKey ( _ + _ ).sortBy ( -_._2 ).take ( ).foreach ( println ) //每个科目前两名的老师
val topGroup = overAll.reduceByKey ( _ + _ ).groupBy ( _._1._2 ).mapValues ( _.toList.sortBy ( -_._2 ).take ( ) ).foreach ( println )
sc.stop () }
}

实例二:

去重

file1:
-- a
-- b
-- c
-- d
-- a
-- b
-- c
-- c file2:
-- b
-- a
-- b
-- d
-- a
-- c
-- d
-- c

代码:

package dayo1

import org.apache.spark.{SparkConf, SparkContext}

object distinct {
def main(args: Array[String]): Unit = {
val cof = new SparkConf ()
.setAppName ( this.getClass.getSimpleName )
.setMaster ( "local[1]" ) val sc = new SparkContext ( cof ) val file1 = sc.textFile ( "E:\\file1.txt" )
val file2 = sc.textFile ( "E:\\file2.txt" )
val list = file1.union ( file2 ).distinct ().sortBy ( tp => tp )
list.foreach ( println )
sc.stop ()
}
}

实例三:

temperature.txt

0067011990999991950051507004888888889999999N9++
0067011990999991950051512004888888889999999N9++
0067011990999991950051518004888888889999999N9-+
0067011990999991949032412004888888889999999N9++
0067011990999991950032418004888888880500001N9++
0067011990999991950051507004888888880500001N9++

需求:分析每年的最高温度

代码:

package dayo1

import org.apache.spark.{SparkConf, SparkContext}

/**
* 0067011990999991950051507004888888889999999N9+00001+9999999999999999999999
* 0067011990999991950051512004888888889999999N9+00221+9999999999999999999999
* 0067011990999991950051518004888888889999999N9-00111+9999999999999999999999
* 0067011990999991949032412004888888889999999N9+01111+9999999999999999999999
* 0067011990999991950032418004888888880500001N9+00001+9999999999999999999999
* 0067011990999991950051507004888888880500001N9+00781+9999999999999999999999
*
* 12345678911234567892123456789312345678941234567895123456789612345678971234
* 需求:分析每年的最高温度
* 数据说明:
*
*
* 第15-19个字符是year 6-9
*
* 第45-50位是温度表示,+表示零上 -表示零下,且温度的值不能是9999,9999表示异常数据
*
* 第50位值只能是0、1、4、5、9几个数字
*/
object temperature {
def main(args: Array[String]): Unit = {
val cof = new SparkConf ()
.setAppName ( this.getClass.getSimpleName )
.setMaster ( "local[*]" )
val sc = new SparkContext ( cof ) val lines = sc.textFile ( "E:\\temperature.txt" ) val yearAndTemp = lines.filter ( tp => {
var temp =
val query = tp.charAt ( ).toString //val query=tp.subString(50,51)
if (tp.charAt ( ).equals ( "+" )) {
temp = tp.substring ( , ).toInt
} else {
temp = tp.substring ( , ).toInt
}
temp != && query.matches ( "[01459]" ) } ).map ( tp => { val year = tp.substring ( , )
var temp =
if (tp.charAt ( ).equals ( "+" )) {
temp = tp.substring ( , ).toInt
} else {
temp = tp.substring ( , ).toInt
} (year, temp)
} ) val res = yearAndTemp.reduceByKey ( (x, y) => if (x > y) x else y ) res.foreach ( tp => println ( "year:" + tp._1 + " temp:" + tp._2 ) )
sc.stop ()
}
}

RDD实例的更多相关文章

  1. Spark RDD编程核心

    一句话说,在Spark中对数据的操作其实就是对RDD的操作,而对RDD的操作不外乎创建.转换.调用求值. 什么是RDD RDD(Resilient Distributed Dataset),弹性分布式 ...

  2. Spark RDD 操作

    1. Spark RDD 创建操作 1.1 数据集合   parallelize 可以创建一个能够并行操作的RDD.其函数定义如下: ) scala> sc.defaultParallelism ...

  3. spark streaming之三 rdd,job的动态生成以及动态调度

    前面一篇讲到了,DAG静态模板的生成.那么spark streaming会在每一个batch时间一到,就会根据DAG所形成的逻辑以及物理依赖链(dependencies)动态生成RDD以及由这些RDD ...

  4. spark 源码分析之一 -- RDD的四种依赖关系

    RDD的四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和OneToOneDependency四种依赖关系.如 ...

  5. Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spa ...

  6. Spark Streaming揭秘 Day15 No Receivers方式思考

    Spark Streaming揭秘 Day15 No Receivers方式思考 在前面也有比较多的篇幅介绍了Receiver在SparkStreaming中的应用,但是我们也会发现,传统的Recei ...

  7. spark 启动job的流程分析

    从WordCount開始分析 编写一个样例程序 编写一个从HDFS中读取并计算wordcount的样例程序: packageorg.apache.spark.examples importorg.ap ...

  8. 《图解Spark:核心技术与案例实战》作者经验谈

    1,看您有维护博客,还利用业余时间著书,在技术输出.自我提升以及本职工作的时间利用上您有没有什么心得和大家分享?(也可以包含一些您写书的小故事.)回答:在工作之余能够写博客.著书主要对技术的坚持和热爱 ...

  9. SparkStreaming流处理

    一.Spark Streaming的介绍 1.       流处理 流式处理(Stream Processing).流式处理就是指源源不断的数据流过系统时,系统能够不停地连续计算.所以流式处理没有什么 ...

随机推荐

  1. [易学易懂系列|rustlang语言|零基础|快速入门|(22)|宏Macro]

    [易学易懂系列|rustlang语言|零基础|快速入门|(22)|宏Macro] 实用知识 宏Macro 我们今天来讲讲Rust中强大的宏Macro. Rust的宏macro是实现元编程的强大工具. ...

  2. oracle plsql登陆用户名密码都正确,拒绝登陆

    先通过sqlplus  或者 sql developer 或者其他用户登陆 然后更改 登陆不上的用户的密码  然后再用plsql登陆就可以了  然后还可以再把用户密码再改回来 也可以登陆了

  3. 使用IDEA创建JavaWeb项目 部署本地tomcat并运行

    一.下载商业版IDEA 官方链接:https://www.jetbrains.com/idea/download/#section=windows 二.新建JavaWeb项目 1.在菜单栏找到File ...

  4. ngnix之笔记

    ############################################################################# 我们在使用的时候会遇到很多的恶意IP攻击,这 ...

  5. 强大的Visual Studio插件CodeRush全新发布v19.2,助力VS开发

    CodeRush是一个强大的Visual Studio .NET 插件,它利用整合技术,通过促进开发者和团队效率来提升开发者体验.CodeRush能帮助你以极高的效率创建和维护源代码.Consume- ...

  6. Hadoop-No.4之列式存储格式

    列式系统可提供的优势 对于查询内容之外的列,不必执行I/O和解压(若适用)操作 非常适合仅访问小部分列的查询.如果访问的列很多,则行存格式更为合适 相比由多行构成的数据块,列内的信息熵更低,所以从压缩 ...

  7. DataGrid控件的列

    四种列(局限性较大)https://www.cnblogs.com/lonelyxmas/p/9442604.html 更强大的模板列(如控件居中等)https://www.cnblogs.com/l ...

  8. Thread(简单使用)

    /***thread.c***/#include<stdio.h> #include<stdlib.h> #include<pthread.h> void prin ...

  9. 20.Python类型转换,Python数据类型转换函数大全

    虽然 Python 是弱类型编程语言,不需要像 Java 或 C 语言那样还要在使用变量前声明变量的类型,但在一些特定场景中,仍然需要用到类型转换. 比如说,我们想通过使用 print() 函数输出信 ...

  10. 流程控制(判断if switch)

    判断语句 判断条件比特别多大 时候用switch 其他时候if语句比较方便   1.if……else a) if(判断条件) {执行语句:}   b) else if (判断语句){执行语句:}   ...