在训练神经网络之前,我们必须有数据,作为资深伸手党,必须知道以下几个数据提供源:

一、CIFAR-10

CIFAR-10图片样本截图

CIFAR-10是多伦多大学提供的图片数据库,图片分辨率压缩至32x32,一共有10种图片分类,均进行了标注。适合监督式学习。CIFAR-10数据下载页面

二、ImageNet

imagenet首页

ImageNet首页

三、ImageFolder

imagefolder首页

ImageFolder首页

四、LSUN Classification

LSUN Classification

LSUN 图片下载地址

五、COCO (Captioning and Detection)

coco首页

COCO首页地址

六、我们进入正题

为了方便加载以上五种数据库的数据,pytorch团队帮我们写了一个torchvision包。使用torchvision就可以轻松实现数据的加载和预处理。

我们以使用CIFAR10为例:

导入torchvision的库:

import torchvision

import torchvision.transforms as transforms  # transforms用于数据预处理

使用datasets.CIFAR10()函数加载数据库。CIFAR10有60000张图片,其中50000张是训练集,10000张是测试集。

#训练集,将相对目录./data下的cifar-10-batches-py文件夹中的全部数据(50000张图片作为训练数据)加载到内存中,若download为True时,会自动从网上下载数据并解压trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=None)

下面简单讲解root、train、download、transform这四个参数

1.root,表示cifar10数据的加载的相对目录

2.train,表示是否加载数据库的训练集,false的时候加载测试集

3.download,表示是否自动下载cifar数据集

4.transform,表示是否需要对数据进行预处理,none为不进行预处理

由于美帝路途遥远,靠命令台进程下载100多M的数据速度很慢,所以我们可以自己去到cifar10的官网上把CIFAR-10 python version下载下来,然后解压为cifar-10-batches-py文件夹,并复制到相对目录./data下。(若设置download=True,则程序会自动从网上下载cifar10数据到相对目录./data下,但这样小伙伴们可能要等一个世纪了),并对训练集进行加载(train=True)。

如图所示,在脚本文件下建一个data文件夹,然后把数据集文件夹丢到里面去就好了,注意cifar-10-batches-py文件夹名字不能自己任意改。

我们在写完上面三行代码后,在写一行print一下trainset的大小看看:

print len(trainset)

#结果:50000

我们在训练神经网络时,使用的是mini-batch(一次输入多张图片),所以我们在使用一个叫DataLoader的工具为我们将50000张图分成每四张图一分,一共12500份的数据包。

#将训练集的50000张图片划分成12500份,每份4张图,用于mini-batch输入。shffule=True在表示不同批次的数据遍历时,打乱顺序(这个需要在训练神经网络时再来讲)。num_workers=2表示使用两个子进程来加载数据

import torch

trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=False, num_workers=2)

那么我们就写下了这几行代码:

print的结果为50000和12500

下面我们需要对数据进行预处理,什么是预处理?为什么要预处理?如果不知道的小盆友可以看看下面几个链接,或许对你有帮助。神经网络为什么要归一化深度学习-----数据预处理。还无法理解也没关系,只要记住,预处理会帮助我们加快神经网络的训练。

在pytorch中我们预处理用到了transforms函数:

transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),])

compose函数会将多个transforms包在一起。

我们的transforms有好几种,例如transforms.ToTensor(), transforms.Scale()等,完整列表在。好好学习吧!

我只讲现在用到了两种:

1.ToTensor是指把PIL.Image(RGB) 或者numpy.ndarray(H x W x C) 从0到255的值映射到0到1的范围内,并转化成Tensor格式。

2.Normalize(mean,std)是通过下面公式实现数据归一化

channel=(channel-mean)/std

那么经过上面两个转换一折腾,我们的数据中的每个值就变成了[-1,1]的数了。

1到22行,我们从硬盘中读取数据,并将数据预处理(第13行,transform=transform),然后转换成4张图为一批的数据结构。26行到47行,为我们显示出一个图片例子,可有可无,不再作代码解释。

源代码下载

更多torchvision加载其他数据库方法


作者:Zen_君
链接:http://www.jianshu.com/p/8da9b24b2fb6
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

超简单!pytorch入门教程(四):准备图片数据集的更多相关文章

  1. 超简单!pytorch入门教程(五):训练和测试CNN

    我们按照超简单!pytorch入门教程(四):准备图片数据集准备好了图片数据以后,就来训练一下识别这10类图片的cnn神经网络吧. 按照超简单!pytorch入门教程(三):构造一个小型CNN构建好一 ...

  2. 超强、超详细Redis入门教程【转】

    这篇文章主要介绍了超强.超详细Redis入门教程,本文详细介绍了Redis数据库各个方面的知识,需要的朋友可以参考下 [本教程目录] 1.redis是什么2.redis的作者何许人也3.谁在使用red ...

  3. 超详细Redis入门教程【转】

    这篇文章主要介绍了超强.超详细Redis入门教程,本文详细介绍了Redis数据库各个方面的知识,需要的朋友可以参考下   [本教程目录] 1.redis是什么 2.redis的作者何许人也 3.谁在使 ...

  4. MongoDB最简单的入门教程之五-通过Restful API访问MongoDB

    通过前面四篇的学习,我们已经在本地安装了一个MongoDB数据库,并且通过一个简单的Spring boot应用的单元测试,插入了几条记录到MongoDB中,并通过MongoDB Compass查看到了 ...

  5. PySide——Python图形化界面入门教程(四)

    PySide——Python图形化界面入门教程(四) ——创建自己的信号槽 ——Creating Your Own Signals and Slots 翻译自:http://pythoncentral ...

  6. JasperReports入门教程(四):多数据源

    JasperReports入门教程(四):多数据源 背景 在报表使用中,一个页面需要打印多个表格,每个表格分别使用不同的数据源是很常见的一个需求.假如我们现在有一个需求如下:需要在一个报表同时打印所有 ...

  7. 无废话ExtJs 入门教程四[表单:FormPanel]

    无废话ExtJs 入门教程四[表单:FormPanel] extjs技术交流,欢迎加群(201926085) 继上一节内容,我们在窗体里加了个表单.如下所示代码区的第28行位置,items:form. ...

  8. MongoDB最简单的入门教程之二 使用nodejs访问MongoDB

    在前一篇教程 MongoDB最简单的入门教程之一 环境搭建 里,我们已经完成了MongoDB的环境搭建. 在localhost:27017的服务器上,在数据库admin下面创建了一个名为person的 ...

  9. MongoDB最简单的入门教程之三 使用Java代码往MongoDB里插入数据

    前两篇教程我们介绍了如何搭建MongoDB的本地环境: MongoDB最简单的入门教程之一 环境搭建 以及如何用nodejs读取MongoDB里的记录: MongoDB最简单的入门教程之二 使用nod ...

  10. MongoDB最简单的入门教程之四:使用Spring Boot操作MongoDB

    Spring Boot 是一个轻量级框架,可以完成基于 Spring 的应用程序的大部分配置工作.Spring Boot的目的是提供一组工具,以便快速构建容易配置的Spring应用程序,省去大量传统S ...

随机推荐

  1. Codeforces Round #323 (Div. 2) Once Again... CodeForces - 582B 最长非下降子序列【dp】(不明白)

    B. Once Again... time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  2. AcWing95. 费解的开关 枚举+位运算

    这道题的确比较难想,首先我们知道图比较小,有可能是枚举,那么该如何枚举呢??? 你可以发现,我们只要把第一排定了,并且保证第一排不准动,那么答案就定了 也就是说,我们首先用二进制枚举,枚举第一行需要翻 ...

  3. 给图片加ALT属性是个什么意思?有什么优点呢

    使用百度统计的seo建议当中一条图片ALT信息"存在没有alt信息的img标签"扣分较多.站点图片中加入ALT对seo有什么优点呢?这是非常多初学seo的朋友们都须要询问的问题.a ...

  4. Flask学习之八 关注、联系人和好友

    英文博客地址:http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-viii-followers-contacts-and- ...

  5. tensorflow学习笔记(三十四):Saver(保存与加载模型)

    Savertensorflow 中的 Saver 对象是用于 参数保存和恢复的.如何使用呢? 这里介绍了一些基本的用法. 官网中给出了这么一个例子: v1 = tf.Variable(..., nam ...

  6. 阿里云Kubernetes服务上使用Tekton完成应用发布初体验

    Tekton 是一个功能强大且灵活的 Kubernetes 原生开源框架,用于创建持续集成和交付(CI/CD)系统.通过抽象底层实现细节,用户可以跨多云平台和本地系统进行构建.测试和部署. 本文是基于 ...

  7. 微信小程序 mode 的几种模式

    mode="aspectFill" mode 有效值: mode 有 13 种模式,其中 4 种是缩放模式,9 种是裁剪模式. 模式 值 说明缩放 scaleToFill 不保持纵 ...

  8. laravel 定时任务通过队列发送邮件

    https://www.jianshu.com/p/f6b94596098e 关于laravel发送邮件,请先参考我的另一片文章:laravel sendcloud发送邮件,再继续往下看. 1.用da ...

  9. better-scroll在移动端绑定click事件失效

    在做一个列表的时候需要点击列表将列表信息输出,给<li>加个一个很简单的@click,可是没有反应. 原因是使用了better-scroll,默认它会阻止touch事件.所以在配置中需要加 ...

  10. supersockets多个 listener

    你可以增加一个子节点 "listeners" 用于添加多对监听 ip/port: <superSocket> <servers> <server na ...