Tasks: invest papers  3 篇. 研究主动权在我手里.  I have to. 

1. the benefit of complex network:

complex network theory has been particularly successful in providing unifying统一的 concepts and methods for understanding the structure and dynamics of complex systems in many areas of science, ranging from power grids over social networks to neuronal networks.

2. the network is recurrence;

3. VGs obtained from periodic signals appear as a concatenation of a finite number of network motifs. ?really?

4. 如何衡量一个高的节点, 根据节点的度/roles of graphs.

the degree of a vertex in the VG characterizes the maximality property. however, this finding is not completely general. since there can be specific conditions (e.g., a concave behavior over a certain period of time) which can lead to highly connected vertices that do not coincide with local maxima, for example, in case of a Conway series.

并不是只有高的节点degree会高, 这结论不具有一般性, for example, in conway series, 最低的凹点会有更多的边.

5. 邻边链接的重要性: the trivial connection of neighboring points in time in the VG enhances the signature of structures due to autocorrelations in the record under study.

邻边 VS 子相关.

Although this might be desirable for VGs and HVGs since some of their respective network properties are explicitly related with the presence of serial dependences (e.g., the typical scale of the degree distribution of HVGs, cf. Luque et al. 2009), there could be situations in which one is interested in removing the corresponding effects. In such cases, it is possible to introduce a minimum time difference for two observations to be connected in the network for removing the effect of slowly decaying autodependences, which would correspond to the Theiler window in other concepts of nonlinear time series analysis (Theiler 1990, Donner et al. 2010). 思考: 我需不需要include它们之间的自相关性.

6. 引入时间差来限制连接的两个观测值.

7. You need to consider possible origins of pitfalls of VG analysis applied to Energy consumption.

what's the pitfalls of VG analysis of your research right now.

8. what kind of information can be obtained from VG analysis.

i. four distributions of vertex properties: distributions of degree; local clustering coefficient; closeness centrality; and betweenness centrality.

ii. the temporal changes in the VG properties: network transitivity T and average path length L. running windows 36o and a mutual offset of 30 days.

9. Summary:

由图分析TS 的两大分支, recurrence networks (Donner) and visibility graphs (Lacasa).

However, the explicit interpretation of more complex local and global network characteristics in a visibility graph is less obvious than for recurrence networks and needs to be fully explored in future work prior to their wide potential application to real-world problems.

VG 存在的问题: 网络特征的可解释性.

the emergence of different topological features in VG reflects the time evolution of the network's architecture.


基础概念:

1. 中心性(Centrality)是社交网络分析(Social network analysis, SNA)中常用的一个概念,用以表达社交网络中一个点或者一个人在整个网络中所在中心的程度,这个程度用数字来表示就被称作为中心度(也就是通过知道一个节点的中心性来了解判断这个节点在这个网络中所占据的重要性的概念).

测定中心度方法的不同,可以分为度中心度(Degree centrality),接近中心度(或紧密中心度,Closeness centrality),中介中心度(或间距中心度,Betweenness centrality)等。more.

2. local clustering coefficent. more

几个用于描述网络节点距离的参数

  • Average distance: 这个很好理解,就是所有两两节点之间的最短距离的平均值,最直接的描述了图的紧密程度。
  • Eccentricity:这个参数描述的是从任意一个节点,到达其他节点的最大距离
  • Diameter:图中的最大两个节点间的距离
  • Radius:图中的最小两个节点间的距离
  • Periphery: 和 Diameter 对应,那些最大节点距离等于 diameter 的节点
  • Center: 和 Radius 对应,那些最大节点距离等于 radius 的节点

3. 自相关性:

金融时间序列一般由固定趋势、季节性变动和随机因素组成。如果时间序列的随机因素在各时间点上完全独立没有任何联系,那么我们很难对这一部分进行建模。幸运的是,对于一般的金融时间序列,在剔除固定趋势和季节效应后,时间序列在不同时点上是存在相关性的,这种自相关特征是我们对时间序列建模的基础。

解决

Visibility Graph Analysis of Geophysical Time Series: Potentials and Possible Pitfalls的更多相关文章

  1. Paper: A Novel Time Series Forecasting Method Based on Fuzzy Visibility Graph

    Problem define a fuzzy visibility graph (undirected weighted graph), then give a new similarity meas ...

  2. Paper: A novel visibility graph transformation of time series into weighted networks

    1. Convert time series into weighted networks. 2. link prediction is used to evaluate the performanc ...

  3. Paper: A novel method for forecasting time series based on fuzzy logic and visibility graph

    Problem Forecasting time series. Other methods' drawback: even though existing methods (exponential ...

  4. Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy

    Their data five data set, 100 single channel of EEG signals, each channel EEG has 4097 data point. t ...

  5. SpaceSyntax【空间句法】之DepthMapX学习:第一篇 数据的输入 与 能做哪些分析

    两部分,1需要喂什么东西给软件,2它能干什么(输出什么东西在下一篇讲) 博客园/B站/知乎/CSDN @秋意正寒 转载请在头部附上源地址 目录:https://www.cnblogs.com/onsu ...

  6. malware analysis、Sandbox Principles、Design && Implementation

    catalog . 引言 . sandbox introduction . Sandboxie . seccomp(short for secure computing mode): API级沙箱 . ...

  7. [LeetCode#261] Graph Valid Tree

    Problem: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair o ...

  8. PP: Time series clustering via community detection in Networks

    Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...

  9. Autocorrelation in Time Series Data

    Why Time Series Data Is Unique A time series is a series of data points indexed in time. The fact th ...

随机推荐

  1. MySQL概述及入门(三)

    MySql概述及入门(三) MySQL性能优化 主要优化安全和性能方面 安全方面 : 数据可持续性 性能方面 : 数据的高性能访问 性能优化——慢查询 在MySQL数据库中有一个慢查询日志功能,去获取 ...

  2. 安装ubuntu到移动硬盘(UEFI+GPT),实现在别的电脑也可以使用(详细教程)

    前置说明:博主小白,第一次安装ubuntu,参考了网上很多人的教程,发博记录一下自己的安装过程.由于有些地方博主理解较浅或者因为机器硬件等各方面原因,本教程适用有限,仅供参考. 1.准备工作 win系 ...

  3. 【python基础语法】第4天作业练习题

    """ 有6道题(通过字典来操作): 1. 某比赛需要获取你的个人信息,设计一个程序, 运行时分别提醒输入 姓名.性别.年龄 ,输入完了,请将数据存储为一个字典, 2.数 ...

  4. 安装Jenkins到Ubuntu(APT)

    运行环境 系统版本:Ubuntu 16.04.4 LTS 软件版本:Jenkins-2.176.2 硬件要求:最低内存:256MB.磁盘:1GB 安装过程 1.配置APT-Jenkins存储库 APT ...

  5. pycharm-1

    Python 1.4解释器(运行文件) 1.5注释:#单行,ctrl+/ 多行注释       ””” ””” 2.1变量 assert,except:lambda; nonlocal; 2.2数据类 ...

  6. CSS小记录

    1.图片铺满 background: rgba(12, 100, 129, 1) url('https://images.cnblogs.com/cnblogs_com/yukarin/1639008 ...

  7. Python第三方库requests的编码问题

    PS:这个解决方法可能很简单,但是这是平时的一些细节问题,所以有必要提醒一下! 首先代码不多,就是通过get方法去获取豆瓣首页信息,如图:但是会报UnicodeEncodeError: 'gbk' c ...

  8. 剑指offer-面试题20-表示数值的字符串-字符串

    /* 题目: 判断字符串是否表示数值. */ /* 思路: 字符串遵循模式A[.[B]][e|EC] ,[+|-].B[e|EC] A.C为可能带正负号的数字串 B为数字串 */ #include&l ...

  9. PAT (Advanced Level) Practice 1008 Elevator (20 分) (模拟)

    The highest building in our city has only one elevator. A request list is made up with N positive nu ...

  10. CentOS MySQL自动备份shell脚本

    先执行  vim/mysqlBack/back.sh 然后添加以下内容 ## 记录日志 # 以下配置信息请自己修改 mysql_user="root" #MySQL备份用户 mys ...