Visibility Graph Analysis of Geophysical Time Series: Potentials and Possible Pitfalls
Tasks: invest papers 3 篇. 研究主动权在我手里. I have to.
1. the benefit of complex network:
complex network theory has been particularly successful in providing unifying统一的 concepts and methods for understanding the structure and dynamics of complex systems in many areas of science, ranging from power grids over social networks to neuronal networks.
2. the network is recurrence;
3. VGs obtained from periodic signals appear as a concatenation of a finite number of network motifs. ?really?
4. 如何衡量一个高的节点, 根据节点的度/roles of graphs.
the degree of a vertex in the VG characterizes the maximality property. however, this finding is not completely general. since there can be specific conditions (e.g., a concave behavior over a certain period of time) which can lead to highly connected vertices that do not coincide with local maxima, for example, in case of a Conway series.
并不是只有高的节点degree会高, 这结论不具有一般性, for example, in conway series, 最低的凹点会有更多的边.
5. 邻边链接的重要性: the trivial connection of neighboring points in time in the VG enhances the signature of structures due to autocorrelations in the record under study.
邻边 VS 子相关.
Although this might be desirable for VGs and HVGs since some of their respective network properties are explicitly related with the presence of serial dependences (e.g., the typical scale of the degree distribution of HVGs, cf. Luque et al. 2009), there could be situations in which one is interested in removing the corresponding effects. In such cases, it is possible to introduce a minimum time difference for two observations to be connected in the network for removing the effect of slowly decaying autodependences, which would correspond to the Theiler window in other concepts of nonlinear time series analysis (Theiler 1990, Donner et al. 2010). 思考: 我需不需要include它们之间的自相关性.
6. 引入时间差来限制连接的两个观测值.
7. You need to consider possible origins of pitfalls of VG analysis applied to Energy consumption.
what's the pitfalls of VG analysis of your research right now.
8. what kind of information can be obtained from VG analysis.
i. four distributions of vertex properties: distributions of degree; local clustering coefficient; closeness centrality; and betweenness centrality.
ii. the temporal changes in the VG properties: network transitivity T and average path length L. running windows 36o and a mutual offset of 30 days.
9. Summary:
由图分析TS 的两大分支, recurrence networks (Donner) and visibility graphs (Lacasa).
However, the explicit interpretation of more complex local and global network characteristics in a visibility graph is less obvious than for recurrence networks and needs to be fully explored in future work prior to their wide potential application to real-world problems.
VG 存在的问题: 网络特征的可解释性.
the emergence of different topological features in VG reflects the time evolution of the network's architecture.
基础概念:
1. 中心性(Centrality)是社交网络分析(Social network analysis, SNA)中常用的一个概念,用以表达社交网络中一个点或者一个人在整个网络中所在中心的程度,这个程度用数字来表示就被称作为中心度(也就是通过知道一个节点的中心性来了解判断这个节点在这个网络中所占据的重要性的概念).
测定中心度方法的不同,可以分为度中心度(Degree centrality),接近中心度(或紧密中心度,Closeness centrality),中介中心度(或间距中心度,Betweenness centrality)等。more.
2. local clustering coefficent. more
几个用于描述网络节点距离的参数
- Average distance: 这个很好理解,就是所有两两节点之间的最短距离的平均值,最直接的描述了图的紧密程度。
- Eccentricity:这个参数描述的是从任意一个节点,到达其他节点的最大距离
- Diameter:图中的最大两个节点间的距离
- Radius:图中的最小两个节点间的距离
- Periphery: 和 Diameter 对应,那些最大节点距离等于 diameter 的节点
- Center: 和 Radius 对应,那些最大节点距离等于 radius 的节点
3. 自相关性:
金融时间序列一般由固定趋势、季节性变动和随机因素组成。如果时间序列的随机因素在各时间点上完全独立没有任何联系,那么我们很难对这一部分进行建模。幸运的是,对于一般的金融时间序列,在剔除固定趋势和季节效应后,时间序列在不同时点上是存在相关性的,这种自相关特征是我们对时间序列建模的基础。
解决
Visibility Graph Analysis of Geophysical Time Series: Potentials and Possible Pitfalls的更多相关文章
- Paper: A Novel Time Series Forecasting Method Based on Fuzzy Visibility Graph
Problem define a fuzzy visibility graph (undirected weighted graph), then give a new similarity meas ...
- Paper: A novel visibility graph transformation of time series into weighted networks
1. Convert time series into weighted networks. 2. link prediction is used to evaluate the performanc ...
- Paper: A novel method for forecasting time series based on fuzzy logic and visibility graph
Problem Forecasting time series. Other methods' drawback: even though existing methods (exponential ...
- Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy
Their data five data set, 100 single channel of EEG signals, each channel EEG has 4097 data point. t ...
- SpaceSyntax【空间句法】之DepthMapX学习:第一篇 数据的输入 与 能做哪些分析
两部分,1需要喂什么东西给软件,2它能干什么(输出什么东西在下一篇讲) 博客园/B站/知乎/CSDN @秋意正寒 转载请在头部附上源地址 目录:https://www.cnblogs.com/onsu ...
- malware analysis、Sandbox Principles、Design && Implementation
catalog . 引言 . sandbox introduction . Sandboxie . seccomp(short for secure computing mode): API级沙箱 . ...
- [LeetCode#261] Graph Valid Tree
Problem: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair o ...
- PP: Time series clustering via community detection in Networks
Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...
- Autocorrelation in Time Series Data
Why Time Series Data Is Unique A time series is a series of data points indexed in time. The fact th ...
随机推荐
- CentOS7安装Python3.6.8
1.首先通过yum安装python可能用到的依赖 yum install openssl-devel bzip2-devel expat-devel gdbm-devel readline-devel ...
- Bash脚本编程学习笔记04:测试命令test、状态返回值、位置参数和特殊变量
我自己接触Linux主要是大学学习的Turbolinux --> 根据<鸟哥的Linux私房菜:基础篇>(第三版) --> 马哥的就业班课程.给我的感觉是这些课程对于bash的 ...
- 纪中10日T1 2300. 【noip普及组第一题】模板题
2300. [noip普及组第一题]模板题 (File IO): input:template.in output:template.out 时间限制: 1000 ms 空间限制: 262144 K ...
- ARM微处理器中支持字节、半字、字三种数据类型,地址的低两位为0是啥意思?
问题: ARM微处理器中支持字节.半字.字三种数据类型,其中,字需要4字节对齐(地址的低两位为0).半字需要2字节对齐(地址的最低位为0).我想问的是括号中的内容是什么意思呢?请牛人帮忙解释一下!谢谢 ...
- 同一服务器下发布两个不同网站(war包)的方法(这里采用的是二级域名的方法)
这里是在阿里云服务器的上部署 在本地测试好之后,打包,然后发到服务器上的tomcat的webapp目录上(这个可能会有个bug,先启动下服务器,然后关掉,再启动,那个war包对应的文件才会出来) 这里 ...
- 随机定时修改密码change_passwd.sh
change_passwd.sh #!/bin/sh /usr/bin/chattr -i /etc/passwd /etc/shadow /etc/group /etc/gshadow /usr/b ...
- Spark学习之路 (二十三)SparkStreaming的官方文档[转]
SparkCore.SparkSQL和SparkStreaming的类似之处 SparkStreaming的运行流程 1.我们在集群中的其中一台机器上提交我们的Application Jar,然后就会 ...
- js返回时间差
function CalcTimeSub(endTime, startTime, type) { var bool = endTime == defaultDateTime || startTime ...
- 一道有趣的for循环题
一道有趣的for循环题 今天在复习js基础知识时发现了一个for循环的题,第一眼看到直接懵逼了,没想到for循环竟然还可以这样玩?涨姿势了. 题目是这样的 for(i=0, j=0; i<10, ...
- MySQL之分库分表
MySQL之分库分表(MyCAT实现) 分库分表介绍 随着微服务这种架构的兴起,我们应用从一个完整的大的应用,切分为很多可以独立提供服务的小应用.每个应用都有独立的数据库. 数据的切分分为两种: ...