PKU blog about this paper

Basic knowledge: 

1. what is time-varying graphs?

time-varying graph VS static graph.

a time-varying graph - an ordered sequence of graph instances.

2. how to measure similarity or dissimilarly between graphs?

way1: map the graphs into a feature space and then define distances on this space.

way2: graph comparison with known node correspondences.

way3: graph comparison without unknown node correspondences.

3. how to visualize time-varying graphs?

two major categories: animation and timelines.

4. how to analysis static graph and visualize static graphs?

Static graph visualization: use variations on node-link visualizations to display graphs.

For dense/clutter graphs, -------> edge bundling.

Questions:

2. how to use persistent homology to capture topological features of time-varying graphs.

  1. how to embed the graph into a metric space.  then topological techniques can be applied into this metric space.

Methodology:

basic rules: use persistent homology to identify and compare features in a time-varying graph.

Their visual design goal: identify high-level structural changes in a time-varying graph.

time-varying graph: an ordered sequence of static graph instances.

Methods:

  1. each graph is embedded into a metric space. G = {G_1, G_2,... G_i...} This yields a symmetric distance matrixd d_i,  d_sp(x,y) is the shortest path distance between node x and node y.
  2. extract topological features from each G_i by using persistnet homology to its metric space.
  3. calculate the distance between persistence diagrams and then project them by using classical multi-dimensional scaling(MDS).

Knowledgebase:

1. Dijkstra's algotithm: 迪杰斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题

2. Quantitative Journey blog about TDA: topological data analysis

Visual detection of structural changes in time-varying graphs using persistent homology的更多相关文章

  1. [CVPR2017] Visual Translation Embedding Network for Visual Relation Detection 论文笔记

    http://www.ee.columbia.edu/ln/dvmm/publications/17/zhang2017visual.pdf Visual Translation Embedding ...

  2. ### Paper about Event Detection

    Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1 ...

  3. Image Processing and Analysis_8_Edge Detection:Theory of Edge Detection ——1980

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  4. 斯坦福CS课程列表

    http://exploredegrees.stanford.edu/coursedescriptions/cs/ CS 101. Introduction to Computing Principl ...

  5. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  6. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  7. Image Processing and Computer Vision_Review:Local Invariant Feature Detectors: A Survey——2007.11

    翻译 局部不变特征探测器:一项调查 摘要 -在本次调查中,我们概述了不变兴趣点探测器,它们如何随着时间的推移而发展,它们如何工作,以及它们各自的优点和缺点.我们首先定义理想局部特征检测器的属性.接下来 ...

  8. OKVIS(一)初始化流程及代码结构

    OKVIS代码结构: okvis_apps: your own app okvis_ceres: backend main code, estimator, error term;  okvis_co ...

  9. [C6] Andrew Ng - Convolutional Neural Networks

    About this Course This course will teach you how to build convolutional neural networks and apply it ...

随机推荐

  1. opencv —— addWeighted 图像叠加(计算数组加权和)

    计算数组加权和:addWeighted 可实现两个大小.类型均相同的数组(一般为 Mat 类型)按照设定权重叠加在一起. void addWeighted(InputArray src1,double ...

  2. Process、管理者权限、注册表、xml修改

    //判断是否有管理者权限 WindowsPrincipal principal = new WindowsPrincipal(WindowsIdentity.GetCurrent()); if (!p ...

  3. 转: Laravel的数据库迁移 介绍的比较清晰

    原文: https://blog.sbot.io/articles/12/Laravel-数据库迁移(Database-Migrations)操作实例 很多人可能在学习Laravel框架的时候,对La ...

  4. webpack4搭建vue多页面环境

    总结一下webpack4配置vue开发环境,本文不具体介绍webpack的基本概念和用途,如有不了解的请参见https://www.webpackjs.com/concepts/官网 一.webpac ...

  5. 【内推】2020微软苏州Office365众多核心团队热招150+研发精英!欢迎推荐

    2020微软苏州Office365众多核心团队热招150+研发精英!欢迎推荐 大家好,目前微软Office365核心团队在美丽宜居的苏州有150多的社招职位虚位以待,欢迎大家自荐,推荐,转发!除以下列 ...

  6. css揭秘 一

    当某些值相互依赖是,应该把它们的相互关系用代码表达出来 font-size: 20px; line-height: 1.5; // 行高是字体的1.5倍 当改变某个参数时候,做到只改尽量少的地方,最好 ...

  7. Java(二)Arrays工具类

    Arrays是一个专门用于操作数组的工具类,该类位于java.util包中. Arrays的常用方法: 1.排序方法 原型:static void sort(int [] a) 功能:对指定的int型 ...

  8. 虚拟机NAT模式连接外网

    虚拟机三种联网方式: 一.NAT(推荐使用)                功能:①可以和外部网络连通    ②可以隔离外部网络 二.桥接模式                        功能:直接 ...

  9. HDU6683

    题意 英文 做法 考虑公比为\(\frac{a}{b}\),满足\(a>b,(a,b)=1\) 枚举长度\(k\),设序列头为\(p\),尾为\(q\),有\(p\times \frac{a^{ ...

  10. 2级搭建类EM-Oracle EMCC 13c Release 3 在 OEL 7.7 上的搭建

    Oracle Enterprise Manager Cloud Control 13c Release 3 (13.3.0.0) 安装