Visual detection of structural changes in time-varying graphs using persistent homology
Basic knowledge:
1. what is time-varying graphs?
time-varying graph VS static graph.
a time-varying graph - an ordered sequence of graph instances.
2. how to measure similarity or dissimilarly between graphs?
way1: map the graphs into a feature space and then define distances on this space.
way2: graph comparison with known node correspondences.
way3: graph comparison without unknown node correspondences.
3. how to visualize time-varying graphs?
two major categories: animation and timelines.
4. how to analysis static graph and visualize static graphs?
Static graph visualization: use variations on node-link visualizations to display graphs.
For dense/clutter graphs, -------> edge bundling.
Questions:
2. how to use persistent homology to capture topological features of time-varying graphs.
- how to embed the graph into a metric space. then topological techniques can be applied into this metric space.
Methodology:
basic rules: use persistent homology to identify and compare features in a time-varying graph.
Their visual design goal: identify high-level structural changes in a time-varying graph.
time-varying graph: an ordered sequence of static graph instances.
Methods:
- each graph is embedded into a metric space. G = {G_1, G_2,... G_i...} This yields a symmetric distance matrixd d_i, d_sp(x,y) is the shortest path distance between node x and node y.
- extract topological features from each G_i by using persistnet homology to its metric space.
- calculate the distance between persistence diagrams and then project them by using classical multi-dimensional scaling(MDS).
Knowledgebase:
1. Dijkstra's algotithm: 迪杰斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题。
2. Quantitative Journey blog about TDA: topological data analysis
Visual detection of structural changes in time-varying graphs using persistent homology的更多相关文章
- [CVPR2017] Visual Translation Embedding Network for Visual Relation Detection 论文笔记
http://www.ee.columbia.edu/ln/dvmm/publications/17/zhang2017visual.pdf Visual Translation Embedding ...
- ### Paper about Event Detection
Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1 ...
- Image Processing and Analysis_8_Edge Detection:Theory of Edge Detection ——1980
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...
- 斯坦福CS课程列表
http://exploredegrees.stanford.edu/coursedescriptions/cs/ CS 101. Introduction to Computing Principl ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- Image Processing and Computer Vision_Review:Local Invariant Feature Detectors: A Survey——2007.11
翻译 局部不变特征探测器:一项调查 摘要 -在本次调查中,我们概述了不变兴趣点探测器,它们如何随着时间的推移而发展,它们如何工作,以及它们各自的优点和缺点.我们首先定义理想局部特征检测器的属性.接下来 ...
- OKVIS(一)初始化流程及代码结构
OKVIS代码结构: okvis_apps: your own app okvis_ceres: backend main code, estimator, error term; okvis_co ...
- [C6] Andrew Ng - Convolutional Neural Networks
About this Course This course will teach you how to build convolutional neural networks and apply it ...
随机推荐
- 从 0 使用 SpringBoot MyBatis MySQL Redis Elasticsearch打造企业级 RESTful API 项目实战
大家好!这是一门付费视频课程.新课优惠价 699 元,折合每小时 9 元左右,需要朋友的联系爱学啊客服 QQ:3469271680:我们每课程是明码标价的,因为如果售价为现在的 2 倍,然后打 5 折 ...
- #AcWing系列课程Level-2笔记——3. 整数二分算法
整数二分算法 编写整数二分,记住下面的思路,代码也就游刃有余了! 1.首先找到数组的中间值,mid=(left+right)>>1,区间[left, right]被划分成[left, mi ...
- #AcWing系列课程Level-2笔记——2. 归并排序算法
归并排序算法 编写归并排序,记住下面的思路,代码也就游刃有余了! 1.首先确定数组的中间位置的分界点(下标),也就是mid=(left+right)>>1,分成left,right两段. ...
- 如何规范git commit提交
相信很多人使用SVN.Git等版本控制工具时候都会觉得每次提交都要写一个注释有什么用啊?好麻烦,所以我每次都是随便写个数字就提交了,但是慢慢的我就发现了,如果项目长期维护或者修改很久之前的项目,没有一 ...
- P1089题解 津津的储蓄计划
来水一篇题解 #include <iostream> using namespace std; int main() { int month[12]; int mother=0,have= ...
- Python3标准库:array数组
1. array数组 array模块定义了一个序列数据结构,看起来与list很相似,只不过所有成员都必须是相同的基本类型.支持的类型包括所有数值类型或其他固定大小的基本类型(如字节). 代码 类型 最 ...
- Java出现次数最多的整数
描述 编写一个程序,读入一组整数,这组整数是按照从小到大的顺序排列的,它们的个数N也是由用户输入的,最多不会超过20.然后程序将对这个数组进行统计,把出现次数最多的那个数组元素值打印出来.如果有两个元 ...
- ng-核心特性(模型概念)
angular核心特性 很多开发者已经做过非常多的项目,但是当你跟他聊的时候,你很快就会发现他并没有掌握这门框架的精髓.打几个比方,当别人提到 Spring 的时候,你的大脑里面第一个想到一定是 DI ...
- 关于BaseServlet的使用
一篇很棒的参考 https://blog.csdn.net/weixin_42425970/article/details/84279257
- tensorflow高阶操作
本篇内容有:如何根据坐标有目的的选择(where).如何根据坐标有目的的更新(scatter_nd).如何生成一个坐标系() 1.where where针对的tensor是一个bool类型的tenso ...