题意:

将一个序列分成非空的三部分,将每部分翻转后组合成一个新的序列,

输出这样操作得到的序列中字典序最小的序列

(保证第一个数是数组中最大的元素)

题解:

把数组当作串串。

因为第一个数最大,所以我们可以先将串反过来,然后可以找第一个sa[ i ] > 1 ,

因为sa[ i ] 就是字典序从小到大排列的。

然后第二部分的处理就我是看题解的。

第二部分不能直接这样求解

例如:

除去第一部分之后的序列为 4 3 2 2  ,如果直接选取字典序最小的的串是 2 ,那么最后的解是 2  4 3 2 显然是错的

但是我们将串翻倍后变为4 3 2 2 4 3 2 2 前4个数中字典序最小的就为2 2 4 3 2 2 ,然后出去翻倍的部分 4 3 2 2

这样的求解就是最优的了

剩下的直接补充即可。

 #include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <set>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <time.h>
#include <vector>
#define pi acos(-1.0)
#define eps 1e-9
#define fi first
#define se second
#define rtl rt<<1
#define rtr rt<<1|1
#define bug printf("******\n")
#define mem(a,b) memset(a,b,sizeof(a))
#define name2str(x) #x
#define fuck(x) cout<<#x" = "<<x<<endl
#define f(a) a*a
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define sffff(a,b,c,d) scanf("%d %d %d %d", &a, &b, &c, &d)
#define pf printf
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)+
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define FIN freopen("data.txt","r",stdin)
#define gcd(a,b) __gcd(a,b)
#define lowbit(x) x&-x
#define rep(i,a,b) for(int i=a;i<b;++i)
#define per(i,a,b) for(int i=a-1;i>=b;--i) using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int maxn = 1e6 + ;
const int maxm = 8e6 + ;
const int INF = 0x3f3f3f3f;
const int mod = ; //rnk从0开始
//sa从1开始,因为最后一个字符(最小的)排在第0位
//height从1开始,因为表示的是sa[i - 1]和sa[i]
//倍增算法 O(nlogn)
int wa[maxn], wb[maxn], wv[maxn], ws_[maxn];
int Rank[maxn], height[maxn], sa[maxn], r[maxn];
int n, maxx;
char s[maxn];
//Suffix函数的参数m代表字符串中字符的取值范围,是基数排序的一个参数,如果原序列都是字母可以直接取128,如果原序列本身都是整数的话,则m可以取比最大的整数大1的值
//待排序的字符串放在r数组中,从r[0]到r[n-1],长度为n
//为了方便比较大小,可以在字符串后面添加一个字符,这个字符没有在前面的字符中出现过,而且比前面的字符都要小
//同上,为了函数操作的方便,约定除r[n-1]外所有的r[i]都大于0,r[n-1]=0
//函数结束后,结果放在sa数组中,从sa[0]到sa[n-1]
void Suffix ( int *r, int *sa, int n, int m ) {
int i, j, k, *x = wa, *y = wb, *t;
//对长度为1的字符串排序
//一般来说,在字符串的题目中,r的最大值不会很大,所以这里使用了基数排序
//如果r的最大值很大,那么把这段代码改成快速排序
for ( i = ; i < m; ++i ) ws_[i] = ;
for ( i = ; i < n; ++i ) ws_[x[i] = r[i]]++; //统计字符的个数
for ( i = ; i < m; ++i ) ws_[i] += ws_[i - ]; //统计不大于字符i的字符个数
for ( i = n - ; i >= ; --i ) sa[--ws_[x[i]]] = i; //计算字符排名
//基数排序
//x数组保存的值相当于是rank值
for ( j = , k = ; k < n; j *= , m = k ) {
//j是当前字符串的长度,数组y保存的是对第二关键字排序的结果
//第二关键字排序
for ( k = , i = n - j; i < n; ++i ) y[k++] = i; //第二关键字为0的排在前面
for ( i = ; i < n; ++i ) if ( sa[i] >= j ) y[k++] = sa[i] - j; //长度为j的子串sa[i]应该是长度为2 * j的子串sa[i] - j的后缀(第二关键字),对所有的长度为2 * j的子串根据第二关键字来排序
for ( i = ; i < n; ++i ) wv[i] = x[y[i]]; //提取第一关键字
//按第一关键字排序 (原理同对长度为1的字符串排序)
for ( i = ; i < m; ++i ) ws_[i] = ;
for ( i = ; i < n; ++i ) ws_[wv[i]]++;
for ( i = ; i < m; ++i ) ws_[i] += ws_[i - ];
for ( i = n - ; i >= ; --i ) sa[--ws_[wv[i]]] = y[i]; //按第一关键字,计算出了长度为2 * j的子串排名情况
//此时数组x是长度为j的子串的排名情况,数组y仍是根据第二关键字排序后的结果
//计算长度为2 * j的子串的排名情况,保存到数组x
t = x;
x = y;
y = t;
for ( x[sa[]] = , i = k = ; i < n; ++i )
x[sa[i]] = ( y[sa[i - ]] == y[sa[i]] && y[sa[i - ] + j] == y[sa[i] + j] ) ? k - : k++;
//若长度为2 * j的子串sa[i]与sa[i - 1]完全相同,则他们有相同的排名
}
}
void calheight ( int *r, int *sa, int n ) {
int i, j, k = ;
for ( i = ; i <= n; i++ ) Rank[sa[i]] = i;
for ( i = ; i < n; height[Rank[i++]] = k )
for ( k ? k-- : , j = sa[Rank[i] - ]; r[i + k] == r[j + k]; k++ );
} int num, b[maxn], ans[maxn];
int main() {
sf ( num );
n = num;
for ( int i = ; i < num ; i++ ) {
scanf ( "%d", &r[num - i - ] );
b[num - i] = r[num - i - ];
}
sort ( b + , b + + num );
int len = unique ( b + , b + + num ) - b - ;
// for ( int i = 1 ; i <= len ; i++ ) printf ( "%d%c", b[i], ( i == len ? '\n' : ' ' ) );
for ( int i = ; i < num ; i++ ) r[i] = lower_bound ( b + , b + + len, r[i] ) - b, maxx = max ( maxx, r[i] );
r[n] = ;
// for ( int i = 0 ; i <= n ; i++ ) printf ( "%d%c", r[i], ( i == n ? '\n' : ' ' ) );
Suffix ( r, sa, n + , maxx + );
calheight ( r, sa, n );
int idx = ;
for ( int i = ; i <= n ; i++ ) {
// printf ( "%d%c", sa[i], ( i == n ? '\n' : ' ' ) );
if ( sa[i] > ) {
idx = sa[i];
break;
}
}
len = ;
for ( int i = idx ; i < num ; i++ ) ans[++len] = r[i];
// for ( int i = 1 ; i <= len ; i++ ) printf ( "%d%c", b[ans[i]], ( i == len ? '\n' : ' ' ) );
n = * idx, maxx = ;
for ( int i = idx ; i < * idx ; i++ ) r[i] = r[i - idx], maxx = max ( maxx, r[i] );
r[n] = ;
// for (int i=0 ;i<n ;i++) printf("%d ",r[i]);
// printf("\n");
Suffix ( r, sa, n + , maxx + );
calheight ( r, sa, n );
for ( int i = ; i <= n ; i++ ) {
if ( sa[i] > && sa[i] < idx ) {
idx = sa[i];
break;
}
}
// fuck(idx);
for ( int i = idx ; i < n / ; i++ ) ans[++len] = r[i]; for ( int i = ; i < idx ; i++ ) ans[++len] = r[i];
for ( int i = ; i <= len ; i++ ) printf ( "%d\n", b[ans[i]] ); return ;
}

Sequence POJ - 3581 后缀数组的更多相关文章

  1. poj 3693 后缀数组 重复次数最多的连续重复子串

    Maximum repetition substring Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8669   Acc ...

  2. POJ 3415 后缀数组

    题目链接:http://poj.org/problem?id=3415 题意:给定2个串[A串和B串],求两个串公共子串长度大于等于k的个数. 思路:首先是两个字符串的问题.所以想用一个'#'把两个字 ...

  3. POJ 3450 后缀数组/KMP

    题目链接:http://poj.org/problem?id=3450 题意:给定n个字符串,求n个字符串的最长公共子串,无解输出IDENTITY LOST,否则最长的公共子串.有多组解时输出字典序最 ...

  4. POJ 1226 后缀数组

    题目链接:http://poj.org/problem?id=1226 题意:给定n个字符串[只含大小写字母],求一个字符串要求在n个串或者他们翻转后的串的出现过.输出满足要求的字符串的长度 思路:根 ...

  5. POJ 3294 后缀数组

    题目链接:http://poj.org/problem?id=3294 题意:给定n个字符串,求一个最长子串要求在超过一半的字符串中出现过. 如果多解按字典序输出 思路:根据<<后缀数组— ...

  6. POJ 2774 后缀数组

    题目链接:http://poj.org/problem?id=2774 题意:给定两个只含小写字母的字符串,求字符串的最长公共子串长度. 思路:根据<<后缀数组——处理字符串的有力工具&g ...

  7. POJ 3693 后缀数组

    题目链接:http://poj.org/problem?id=3693 题意:首先定义了一个字符串的重复度.即一个字符串由一个子串重复k次构成.那么最大的k即是该字符串的重复度.现在给定一个长度为n的 ...

  8. POJ 3261 后缀数组

    题目链接:http://poj.org/problem?id=3261 题意:约翰注意到奶牛产奶的之类是不断变化的,虽然他不能预测从当天到下一天的变化情况但是他知道变化是有规律的,牛奶的质量由一个整数 ...

  9. POJ 1743 后缀数组

    题目链接:http://poj.org/problem?id=1743 题意:给定一个钢琴的音普序列[值的范围是(1~88)],现在要求找到一个子序列满足 1,长度至少为5 2,序列可以转调,即存在两 ...

随机推荐

  1. QT install

    { https://www.bilibili.com/video/av18148008?from=search&seid=15361598961528715331 }

  2. c++ exit() 函数

    函数用法 编辑 函数名: exit() 所在头文件:stdlib.h(如果是”VC6.0“的话头文件为:windows.h) 功 能: 关闭所有文件,终止正在执行的进程. exit(0)表示正常退出, ...

  3. C++ 数组作为参数的传递

    //#include <iostream> //#include <conio.h> //using namespace std; // // //void are7(int( ...

  4. Openssl命令的使用

    用途: pkcs8格式的私钥转换工具.它处理在PKCS#8格式中的私钥文件.它可以用多样的PKCS#5 (v1.5 and v2.0)和 PKCS#12算法来处理没有解密的PKCS#8 Private ...

  5. 经典换根dp——hdu2196

    给定一棵边权树,求距离每个点最远的点,输出这个距离 #include<bits/stdc++.h> using namespace std; #define N 10005 ]; int ...

  6. LeakCanary 与 鹅场Matrix ResourceCanary对比分析

    推荐阅读: 滴滴Booster移动App质量优化框架-学习之旅 一 Android 模块Api化演练 不一样视角的Glide剖析(一) LeakCanary是Square公司基于MAT开源的一个内存泄 ...

  7. JVM内核-原理、诊断与优化学习笔记(七):性能监控工具

    文章目录 系统性能监控 系统性能监控- linux uptime top vmstat(虚拟内存统计) pidstat 系统性能监控 - windows 任务管理器 Perfmon Process E ...

  8. decimate、end、interp、resample工具箱函数

  9. 【ARC072E】Alice in linear land

    题目 瑟瑟发抖,这竟然只是个蓝题 题意大概就是初始在\(0\),要到坐标为\(D\)的地方去,有\(n\)条指令,第\(i\)条为\(d_i\).当收到一条指令\(x\)后,如果向\(D\)方向走\( ...

  10. YARN设计思路