本篇我们将使用Java语言来实现Flink的单词统计。

代码开发

环境准备

导入Flink 1.9 pom依赖

<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.9.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>1.9.0</version>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
<version>3.7</version>
</dependency>
</dependencies>

构建Flink流处理环境

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

自定义source

每秒生成一行文本

DataStreamSource<String> wordLineDS = env.addSource(new RichSourceFunction<String>() {
private boolean isCanal = false;
private String[] words = {
"important oracle jdk license update",
"the oracle jdk license has changed for releases starting april 16 2019",
"the new oracle technology network license agreement for oracle java se is substantially different from prior oracle jdk licenses the new license permits certain uses such as ",
"personal use and development use at no cost but other uses authorized under prior oracle jdk licenses may no longer be available please review the terms carefully before ",
"downloading and using this product an faq is available here ",
"commercial license and support is available with a low cost java se subscription",
"oracle also provides the latest openjdk release under the open source gpl license at jdk java net"
}; @Override
public void run(SourceContext<String> ctx) throws Exception {
// 每秒发送一行文本
while (!isCanal) {
int randomIndex = RandomUtils.nextInt(0, words.length);
ctx.collect(words[randomIndex]);
Thread.sleep(1000);
}
} @Override
public void cancel() {
isCanal = true;
}
});

单词计算

// 3. 单词统计
// 3.1 将文本行切分成一个个的单词
SingleOutputStreamOperator<String> wordsDS = wordLineDS.flatMap((String line, Collector<String> ctx) -> {
// 切分单词
Arrays.stream(line.split(" ")).forEach(word -> {
ctx.collect(word);
});
}).returns(Types.STRING); //3.2 将单词转换为一个个的元组
SingleOutputStreamOperator<Tuple2<String, Integer>> tupleDS = wordsDS
.map(word -> Tuple2.of(word, 1))
.returns(Types.TUPLE(Types.STRING, Types.INT)); // 3.3 按照单词进行分组
KeyedStream<Tuple2<String, Integer>, String> keyedDS = tupleDS.keyBy(tuple -> tuple.f0); // 3.4 对每组单词数量进行累加
SingleOutputStreamOperator<Tuple2<String, Integer>> resultDS = keyedDS
.timeWindow(Time.seconds(3))
.reduce((t1, t2) -> Tuple2.of(t1.f0, t1.f1 + t2.f1)); resultDS.print();

参考代码

public class WordCount {
public static void main(String[] args) throws Exception {
// 1. 构建Flink流式初始化环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 2. 自定义source - 每秒发送一行文本
DataStreamSource<String> wordLineDS = env.addSource(new RichSourceFunction<String>() {
private boolean isCanal = false;
private String[] words = {
"important oracle jdk license update",
"the oracle jdk license has changed for releases starting april 16 2019",
"the new oracle technology network license agreement for oracle java se is substantially different from prior oracle jdk licenses the new license permits certain uses such as ",
"personal use and development use at no cost but other uses authorized under prior oracle jdk licenses may no longer be available please review the terms carefully before ",
"downloading and using this product an faq is available here ",
"commercial license and support is available with a low cost java se subscription",
"oracle also provides the latest openjdk release under the open source gpl license at jdk java net"
}; @Override
public void run(SourceContext<String> ctx) throws Exception {
// 每秒发送一行文本
while (!isCanal) {
int randomIndex = RandomUtils.nextInt(0, words.length);
ctx.collect(words[randomIndex]);
Thread.sleep(1000);
}
} @Override
public void cancel() {
isCanal = true;
}
}); // 3. 单词统计
// 3.1 将文本行切分成一个个的单词
SingleOutputStreamOperator<String> wordsDS = wordLineDS.flatMap((String line, Collector<String> ctx) -> {
// 切分单词
Arrays.stream(line.split(" ")).forEach(word -> {
ctx.collect(word);
});
}).returns(Types.STRING); //3.2 将单词转换为一个个的元组
SingleOutputStreamOperator<Tuple2<String, Integer>> tupleDS = wordsDS
.map(word -> Tuple2.of(word, 1))
.returns(Types.TUPLE(Types.STRING, Types.INT)); // 3.3 按照单词进行分组
KeyedStream<Tuple2<String, Integer>, String> keyedDS = tupleDS.keyBy(tuple -> tuple.f0); // 3.4 对每组单词数量进行累加
SingleOutputStreamOperator<Tuple2<String, Integer>> resultDS = keyedDS
.timeWindow(Time.seconds(3))
.reduce((t1, t2) -> Tuple2.of(t1.f0, t1.f1 + t2.f1)); resultDS.print(); env.execute("app");
}
}

Flink对Java Lambda表达式支持情况

Flink支持Java API所有操作符使用Lambda表达式。但是,但Lambda表达式使用Java泛型时,就需要声明类型信息。

我们来看下上述的这段代码:

SingleOutputStreamOperator<String> wordsDS = wordLineDS.flatMap((String line, Collector<String> ctx) -> {
// 切分单词
Arrays.stream(line.split(" ")).forEach(word -> {
ctx.collect(word);
});
}).returns(Types.STRING);

之所以这里将所有的类型信息,因为Flink无法正确自动推断出来Collector中带的泛型。我们来看一下FlatMapFuntion的源代码

@Public
@FunctionalInterface
public interface FlatMapFunction<T, O> extends Function, Serializable {

/**
* The core method of the FlatMapFunction. Takes an element from the input data set and transforms
* it into zero, one, or more elements.
*
* @param value The input value.
* @param out The collector for returning result values.
*
* @throws Exception This method may throw exceptions. Throwing an exception will cause the operation
* to fail and may trigger recovery.
*/
void flatMap(T value, Collector<O> out) throws Exception;
}

我们发现 flatMap的第二个参数是Collector<O>,是一个带参数的泛型。Java编译器编译该代码时会进行参数类型擦除,所以Java编译器会变成成:

void flatMap(T value, Collector out)

这种情况,Flink将无法自动推断类型信息。如果我们没有显示地提供类型信息,将会出现以下错误:

org.apache.flink.api.common.functions.InvalidTypesException: The generic type parameters of 'Collector' are missing.
In many cases lambda methods don't provide enough information for automatic type extraction when Java generics are involved.
An easy workaround is to use an (anonymous) class instead that implements the 'org.apache.flink.api.common.functions.FlatMapFunction' interface.
Otherwise the type has to be specified explicitly using type information.

这种情况下,必须要显示指定类型信息,否则输出将返回值视为Object类型,这将导致Flink无法正确序列化。

所以,我们需要显示地指定Lambda表达式的参数类型信息,并通过returns方法显示指定输出的类型信息

我们再看一段代码:

SingleOutputStreamOperator<Tuple2<String, Integer>> tupleDS = wordsDS
.map(word -> Tuple2.of(word, 1))
.returns(Types.TUPLE(Types.STRING, Types.INT));

为什么map后面也需要指定类型呢?

因为此处map返回的是Tuple2类型,Tuple2是带有泛型参数,在编译的时候同样会被查出泛型参数信息,导致Flink无法正确推断。

更多关于对Java Lambda表达式的支持请参考官网:https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/java_lambdas.html

「Flink」使用Java lambda表达式实现Flink WordCount的更多相关文章

  1. Java Lambda表达式初探

    Java Lambda表达式初探 前言 本文受启发于Trisha Gee在JavaOne 2016的主题演讲Refactoring to Java 8. Java 8已经发行两年多,但很多人仍然在使用 ...

  2. Java Lambda表达式入门

    Java Lambda表达式入门 http://blog.csdn.net/renfufei/article/details/24600507 Java 8十个lambda表达式案例 http://w ...

  3. Java Lambda表达式入门[转]

    原文链接: Start Using Java Lambda Expressions http://blog.csdn.net/renfufei/article/details/24600507 下载示 ...

  4. Java Lambda表达式教程与示例

    Lambda表达式是Java 8中引入的一个新特性.一个lambda表达式是一个匿名函数,而且这个函数没有名称且不属于任何类.lambda表达式的概念最初是在LISP编程语言中引入的. Java La ...

  5. Java Lambda表达式forEach无法跳出循环的解决思路

    Java Lambda表达式forEach无法跳出循环的解决思路 如果你使用过forEach方法来遍历集合,你会发现在lambda表达式中的return并不会终止循环,这是由于lambda的底层实现导 ...

  6. java lambda表达式学习笔记

    lambda是函数式编程(FP,functional program),在java8中引入,而C#很早之前就有了.在java中lambda表达式是'->',在C#中是‘=>’. 杜甫说:射 ...

  7. 《Java基础知识》Java Lambda表达式

    接触Lambda表达式的时候,第一感觉就是,这个是啥?我居然看不懂,于是开始寻找资料,必须弄懂它. 先来看一个案例: @FunctionalInterface public interface MyL ...

  8. Java lambda 表达式常用示例

    实体类 package com.lkb.java_lambda.dto; import lombok.Data; /** * @program: java_lambda * @description: ...

  9. Java lambda 表达式详解(JDK 8 新特性)

    什么是 lambda 表达式 lambda 表达式(拉姆达表达式)是 JAVA 8 中提供的一种新的特性,它使 Java 也能进行简单的"函数式编程". lambda 表达式的本质 ...

随机推荐

  1. Windos下的一些命令集合

    由于在CMD模式下(也就是命令行)有较多的有用的命令.以下是自己平时所记录下来的以帮助平时的任务. 1. 显示计算机的操作系统 wmic os get osarchitecture /value

  2. 龙芯2f 8089D 笔记本 Debian 系统安装配置

    版权声明:原创文章,未经博主允许不得转载 正文主要讲述安装社区版Debian6镜像(也有7和8,方法大同小异) 最后简单介绍了网络安装原版Debian 小记 非网络安装,没网也没事,再也不用担心网速度 ...

  3. 《即时消息技术剖析与实战》学习笔记10——IM系统如何应对高并发

    一.IM 系统的高并发场景 IM 系统中,高并发多见于直播互动场景.比如直播间,在直播过程中,观众会给主播打赏.送礼.发送弹幕等,尤其是明星直播间,几十万.上百万人的规模一点也不稀奇.近期随着武汉新型 ...

  4. spring cloud oauth2搭建认证中心与资源中心

    一 认证中心搭建 添加依赖,如果使用spring cloud的话,不管哪个服务都只需要这一个封装好的依赖即可 <dependency> <groupId>org.springf ...

  5. Nutz | Nutz项目整合Spring实战

    Nutz项目整合Spring实战 前言 Github地址 背景 实现步骤 加入springMvc与Spring 相关配置 新增Spring相关配置 新增SpringIocProvider 重写Nutz ...

  6. 解决git报错:error: RPC failed; curl 18 transfer closed with outstanding read data remaining 的方法

    报错信息: error: RPC failed; curl 18 transfer closed with outstanding read data remainingfatal: the remo ...

  7. ROS与激光雷达入门-ROS中使用激光雷达(RPLIDAR)

    激光雷达(RPLIDAR) 我这里用的是思岚(rplidar)A1,通过ros系统去驱动激光雷达,现在做了一个基本的入门. RPLIDAR是低成本的二维雷达解决方案,由SlamTec公司的RoboPe ...

  8. Linux系统的用户和用户组管理

    一.用户账户管理 Linux/Unix是一个用户.多任务的操作系统:在讲Linux账号及账户组管理之前,先简单了解一下多用户.多任务操作系统的基本概念. Linux的单用户多任务 在Linux下,当你 ...

  9. 命令行开启WIFI

    netsh wlan set hostednetwork allow   //netsh wlan set hostednetwork mode=disallow netsh wlan set hos ...

  10. 【SpringBoot MQ 系列】RabbitMq 核心知识点小结

    [MQ 系列]RabbitMq 核心知识点小结 以下内容,部分取材于官方教程,部分来源网络博主的分享,如有兴趣了解更多详细的知识点,可以在本文最后的文章列表中获取原地址 RabbitMQ 是一个基于 ...