Meta Learner和之前介绍的Casual Tree直接估计模型不同,属于间接估计模型的一种。它并不直接对treatment effect进行建模,而是通过对response effect(target)进行建模,用treatment带来的target变化作为HTE的估计。主要方法有3种:T-Learner, S-Learner, X-Learner,思路相对比较传统的是在监督模型的基础上去近似因果关系。

Meta-Learner的优点很明显,可以使用任意ML监督模型进行拟合不需要构建新的estimator。所以如果有必需要基于DNN/LGB的需求不妨用Meta-Learner作为Benchamrk

核心论文

Künzel, S. R., Sekhon, J. S., Bickel, P. J., & Yu, B. (2019). Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the National Academy of Sciences, 116(10), 4156–4165.

模型

T-Learner

T是two的缩写,是比较传统的ML模型用于因果推理的方式。对照组和实验组进行分别建模得到两个模型,对每个样本计算两个模型的预测值之差作为HTE的估计
\[
\begin{align}
\mu_0(x) = E[Y (0)|X = x]\\
\mu_1(x) = E[Y (1)|X = x]\\
\hat{\tau}(x) = \hat{\mu}_1 (x) - \hat{\mu}_0(x)
\end{align}
\]

T-Learner有3个很明显的问题

  1. 对照组的模型无法学到实验组的pattern,实验组的模型也无法用到对照组的数据。两个模型完全隔离,也就导致两个模型可能各自有各自的偏差,从而导致的预测产生较大的误差。
  2. T-Learner限制了Treatment只能是离散值
  3. 大多数情况下treatment effect和response相比都是很小的,因此在response上的估计偏差会对treatment有很大影响

S-Learner

S是Single的缩写,把对照组和实验组放在一起建模,把实验分组作为特征加入训练特征。然后用Imputation的方法计算如果该样本进入实验组vs对照组模型预测的差异作为对实验影响的估计。

\[
\begin{align}
μ(x, w) &= E[Y|X = x, W = w]\\
\hat{\tau}(x) &= \hat{\mu} (x,1) - \hat{\mu}(x,0)
\end{align}
\]

S-Learner的问题同样在于本质是对response进行拟合。如果使用树作为Base-learner,最终的HTE可以简单理解为样本落在不同的叶节点,叶节点的样本差异。但因为树本身是对outcome进行建模而非对treatment effect进行建模,很有可能有效的人群划分方式在这种情况下并学习不到。

S-Learner的思想很常见,和可解释机器学习中的Individual Conditional Expectation(ICE)本质是一样的, 在全样本上求平均也就是大家熟悉的Partial Dependence。

X-Learner

X-Learner是针对上述提到的问题对T-Learner和S-Learner进行了融合。步骤如下

  1. 分别对对照组和实验组进行建模得到模型\(M_1\),\(M_2\)和T-Learner一样
  2. 把对照组放进实验组模型预测,再把实验组放进对照组模型预测,预测值和实际值的差作为HTE的近似。这里和S-Learner的思路近似是imputation的做法。
  3. 实验组和对照组分别对上述target建模得到\(M_3\),\(M_4\),每个样本得到两个预测值然后加权,权重一般可选propensity score,随机实验中可以直接用进组用户数,流量相同的随机实验直接用0.5感觉也没啥问题
    \[
    \begin{align}
    \hat{\mu_0}(x) &= M_1(Y^0 \sim X^0)\\
    \hat{\mu_1}(x) &= M_2(Y^1 \sim X^1)\\
    \hat{D_1}(x) &= Y_1 - \hat{\mu}_0(x)\\
    \hat{D_0}(x) &= \hat{\mu}_1(x) - Y_0 \\
    \hat{\tau_0} &= M_3(\hat{D_0}(x) \sim X_0)\\
    \hat{\tau_1} &= M_4(\hat{D_1}(x) \sim X_1)\\
    \hat{\tau} &= g(x) *\hat{\tau_0} + (1-g(x)) *\hat{\tau_1}\\
    \end{align}
    \]

方法比较

在作者分别给出几种可能类型的simulation,并评估S,X,T的表现。以下分别是:Treatment unbalanced, CATE complex linear, CATE complex non-linear, HTE=0 global linear, HTE=0 local linear。

简而言之,实验影响较大时X-Learner表现最好,实验影响微小时S-Learner和X-Learner表现差不多。

对其他HTE模型感兴趣的

AB实验人群定向HTE模型5 - Meta Learner的更多相关文章

  1. Paper慢慢读 - AB实验人群定向 Double Machine Learning

    Hetergeneous Treatment Effect旨在量化实验对不同人群的差异影响,进而通过人群定向/数值策略的方式进行差异化实验,或者对实验进行调整.Double Machine Learn ...

  2. Paper慢慢读 - AB实验人群定向 Recursive Partitioning for Heterogeneous Casual Effects

    这篇是treatment effect估计相关的论文系列第一篇所以会啰嗦一点多给出点背景. 论文 Athey, S., and Imbens, G. 2016. Recursive partition ...

  3. Paper慢慢读 - AB实验人群定向 Learning Triggers for Heterogeneous Treatment Effects

    这篇论文是在 Recursive Partitioning for Heterogeneous Casual Effects 的基础上加入了两个新元素: Trigger:对不同群体的treatment ...

  4. 滴滴数据驱动利器:AB实验之分组提效

    桔妹导读:在各大互联网公司都提倡数据驱动的今天,AB实验是我们进行决策分析的一个重要利器.一次实验过程会包含多个环节,今天主要给大家分享滴滴实验平台在分组环节推出的一种提升分组均匀性的新方法.本文首先 ...

  5. AB实验的高端玩法系列3 - AB组不随机?观测试验?Propensity Score

    背景 都说随机是AB实验的核心,为什么随机这么重要呢?有人说因为随机所以AB组整体不存在差异,这样才能准确估计实验效果(ATE) \[ ATE = E(Y_t(1) - Y_c(0)) \] 那究竟随 ...

  6. AB实验的高端玩法系列4- 实验渗透低?用户未被触达?CACE/LATE

    CACE全称Compiler Average Casual Effect或者Local Average Treatment Effect.在观测数据中的应用需要和Instrument Variable ...

  7. django模型之meta使用

    模型元数据Meta是“任何不是字段的数据”,比如排序选项(ordering),数据库表名(db_table)或者人类可读的单复数名称(verbose_name 和verbose_name_plural ...

  8. AB实验的高端玩法系列2 - 更敏感的AB实验, CUPED!

    背景 AB实验可谓是互联网公司进行产品迭代增加用户粘性的大杀器.但人们对AB实验的应用往往只停留在开实验算P值,然后let it go...let it go ... 让我们把AB实验的结果简单的拆解 ...

  9. 为什么在数据驱动的路上,AB 实验值得信赖?

    在线AB实验成为当今互联网公司中必不可少的数据驱动的工具,很多公司把自己的应用来做一次AB实验作为数据驱动的试金石. 文 | 松宝 来自 字节跳动数据平台团队增长平台 在线AB实验成为当今互联网公司中 ...

随机推荐

  1. 提高Dom 访问效率

    在浏览器中对于Dom的操作和普通的脚本的操作处于两个不同的dll中,两个dll的交互是比较耗时的,优化对Dom的操作可以提高脚本的执行速度. JS访问DOM是很慢的,尽量不要用JS来设置页面 布局 有 ...

  2. 指定HTML标签属性 |Specifying HTML Attributes| 在视图中生成输出URL |高级路由特性 | 精通ASP-NET-MVC-5-弗瑞曼

    结果呢: <a class="myCSSClass" href="/" id="myAnchorID">This is an o ...

  3. CTRL_IKun团队项目总结

    1. 团队项目-总结 这个作业属于哪个课程 课程链接 这个作业要求在哪里 作业要求 团队名称 CTRP-lkun 这个作业的目标 团队项目总结,每个人的收获和感悟 Github地址 Github 2. ...

  4. 使用Jenkins持续集成

    本篇文章主要说明的是如何使用Jenkins持续集成自己的代码. 1.Jenkins的安装与配置 使用Jenkins之前需要安装和配置Jenkins,具体安装和配置方法参照这个博客:http://www ...

  5. SpringBoot安全篇Ⅵ --- 整合Spring Security

    知识储备: 关于SpringSecurity的详细学习可以查看SpringSecurity的官方文档. Spring Security概览 应用程序的两个主要区域是"认证"和&qu ...

  6. JavaScript面向对象:创建对象

    1.初级创建对象 var oCar=new Object; oCar.color='red'; oCar.door=4; oCar.map=3; oCar.showColor=function () ...

  7. springIOC源码接口分析(七):ApplicationEventPublisher

    一 定义方法 此接口主要是封装事件发布功能的接口,定义了两个方法: /** * 通知应用所有已注册且匹配的监听器此ApplicationEvent */ default void publishEve ...

  8. es学习(三):分词器介绍以及中文分词器ik的安装与使用

    什么是分词 把文本转换为一个个的单词,分词称之为analysis.es默认只对英文语句做分词,中文不支持,每个中文字都会被拆分为独立的个体. 示例 POST http://192.168.247.8: ...

  9. 3、MySQL 索引失效的场景

    索引失效的场景: 1.没有 where 条件 直接看 SQL 语句   2.where 条件中所在的列没有建立索引 show index from t;   3.从表中取得数据超过某个阈值.通常认为是 ...

  10. 分享数百个 HT 工业互联网 2D 3D 可视化应用案例之 2019 篇

    继<分享数百个 HT 工业互联网 2D 3D 可视化应用案例>2018 篇,图扑软件定义 2018 为国内工业互联网可视化的元年后,2019 年里我们与各行业客户进行了更深度合作,拓展了H ...