题目链接

The problem is quite simple. You're given a number N and a positive integer K. Tell if N can be represented as a sum of K prime numbers (not necessarily distinct).

Input Format
The first line contains a single integer T, denoting the number of test cases. 
Each of the next T lines contains two positive integers, N & K, separated by a single space.

Output Format
For every test case, output "Yes" or "No" (without quotes).

Constraints
1 <= T <= 5000 
1 <= N <= 1012 
1 <= K <= 1012

Sample Input

2
10 2
1 6

Sample Output

Yes
No

Explanation

In the first case, 10 can be written as 5 + 5, and 5 is a prime number. In the second case, 1 cannot be represented as a sum of prime numbers, because there are no prime numbers less than 1.

题意:给两个正整数n和k,问能否将n分解为k个素数的和(可以出现相同的)。

思路:本题涉及的知识点有哥德巴赫猜想(任何大于2的偶数都可以拆分成两个素数的和),

还有Miller-Rabin素数测试,一般使用的素数测试是O(sqrt(n))复杂度的,无法满足大整数的要求。

费马小定理: 如果p是一个素数,且(0<a<p),则

例如,67是一个素数,则2^66 mod 67=1.

利用费马小定理,对于给定的整数n,可以设计一个素数判定算法.通过计算d=2^(n-1) mod n 来判定整数n的素性.当d≠1时,n肯定不是素数;当d=1时,n则很可能是素数,但也存在合数n,使得 .例如,满足此条件的最小合数是n=341.为了提高测试的准确性,我们可以随机地选取整数1<a<n-1,然后用条件 来判定整数n的素性.例如对于n=341,取a=3时,有 ,故可判定n不是素数.

费马小定理毕竟只是素数判定的一个必要条件.满足费马小定理条件的整数n未必全是素数.有些合数也满足费马小定理的条件.这些合数被称作Carmichael数,前3个Carmichael数是561,1105,1729. Carmichael数是非常少的.在1~100000000范围内的整数中,只有255个Carmichael数.

利用下面的二次探测定理可以对上面的素数判定算法作进一步改进,以避免将Carmichael数当作素数.

二次探测定理  如果p是一个素数,且0<x<p,则方程x*x≡1(mod p)的解为x=1,p-1.

事实上, x*x≡1(mod p)等价于 x*x-1≡0(mod p).由此可知;

(x-1)(x+1) ≡1(mod p)

故p必须整除x-1或x+1.由p是素数且 0<x<p,推出x=1或x=p-1.

利用二次探测定理,我们可以在利用费马小定理计算 a^(n-1) mod n的过程中增加对于整数n的二次探测.一旦发现违背二次探测条件,即可得出n不是素数的结论.

Accepted Code:

 #include <ctime>
#include <iostream>
using namespace std; typedef long long LL; LL mulMod(LL a, LL b, LL c) {
LL res = ;
while (b) {
if (b&) if ((res = (res + a)) >= c) res -= c;
a = a + a;
if (a >= c) a -= c;
b >>= ;
}
return res;
} LL powMod(LL a, LL b, LL c) {
LL res = ;
while (b) {
if (b&) res = mulMod(res, a, c);
a = mulMod(a, a, c);
b >>= ;
}
return res;
} bool isPrime(LL n) {
if (n <= ) return false;
if (n == ) return true;
if (n & == ) return false;
srand((LL)time());
LL u = n - , k = , pre;
while (!(u&)) u >>= , k++;
for (int t = ; t < ; t++) {
LL a = rand() % (n - ) + ;
LL ans = powMod(a, n - , n);
for (int i = ; i < k; i++) {
pre = ans;
ans = mulMod(ans, ans, n);
if (ans == && (pre != && pre != n - )) return false;
pre = ans;
}
if (ans != ) return false;
}
return true;
} int main(void) {
ios::sync_with_stdio(false);
int T;
cin >> T;
while (T--) {
LL n, k;
cin >> n >> k;
if (n < * k) {
cout << "No" << endl;
} else {
if (k == ) {
if (isPrime(n)) cout << "Yes" << endl;
else cout << "No" << endl;
} else if (k == ) {
if (n % == ) cout << "Yes" << endl;
else if (isPrime(n - )) cout << "Yes" << endl;
else cout << "No" << endl;
} else {
cout << "Yes" << endl;
}
}
}
return ;
}

Hackerrank--Prime Sum的更多相关文章

  1. Project Euler 50 Consecutive prime sum

    题意: 素数41可以写成六个连续素数的和: 41 = 2 + 3 + 5 + 7 + 11 + 13 在小于一百的素数中,41能够被写成最多的连续素数的和. 在小于一千的素数中,953能够被写成最多的 ...

  2. SGU 231.Prime Sum

    题意: 求有多少对质数(a,b)满足a<=b 且a+b也为质数.(a+b<=10^6) Solution: 除了2之外的质数都是奇数,两个奇数的和是偶数,不可能是质数.所以题目就是求差为2 ...

  3. SGU 231 Prime Sum 求&lt;=n内有多少对素数(a,b)使得a+b也为素数 规律题

    题目链接:contest=0&problem=231">点击打开链接 题意: 求<=n内有多少对素数(a,b)使得a+b也为素数 思路: 我们发现全部素数间隔都是> ...

  4. 4190. Prime Palindromes 一亿以内的质数回文数

    Description The number 151 is a prime palindrome because it is both a prime number and a palindrome ...

  5. Html 特殊符号

    HTML特殊符号对照表 特殊符号 命名实体 十进制编码 特殊符号 命名实体 十进制编码 Α Α Α Β Β Β Γ Γ Γ Δ Δ Δ Ε Ε Ε Ζ Ζ Ζ Η Η Η Θ Θ Θ Ι Ι Ι Κ ...

  6. HTML特殊符号汇总

    较常用的飘黄处理了 ´ ´ © © > > µ µ ® ® & & ° ° ¡ ¡   » » ¦ ¦ ÷ ÷ ¿ ¿ ¬ ¬ § § • • ½ ½ « « ¶ ¶ ¨ ...

  7. html特殊符号

    1                     ´ ´ © © > > µ µ ® ® & & ° ° ¡ ¡     » » ¦ ¦ ÷ ÷ ¿ ¿ ¬ ¬ § § • • ...

  8. 【HTML】HTML特殊符号【转http://www.cnblogs.com/web-d/archive/2010/04/16/1713298.html】

    HTML特殊字符编码大全:往网页中输入特殊字符,需在html代码中加入以&开头的字母组合或以&#开头的数字.下面就是以字母或数字表示的特殊符号大全.                   ...

  9. PE的一些水 3-50

    T3: 分解质因数. lalala T4: 暴模. 然而数学方法怎么搞?---->也就是怎么手算?... 于是看了一下讨论区...发现原来我的数学已经低于小学生水平了... 我们把答案abccb ...

  10. 网页特殊符号HTML代码大全

    往网页中输入特殊字符,需在html代码中加入以&开头的字母组合或以&#开头的数字.下面就是以字母或数字表示的特殊符号大全.   ´ ´ © © > > µ µ ® ® &a ...

随机推荐

  1. 接口测试——postman

    一.接口测试的准备工作 做接口测试之前需要有接口文档,请求参数,返回参数 二.使用postman进行接口测试 1.get请求 ①get请求可以直接在URL后面添加问号加参数,不需要使用工具来测试接口: ...

  2. csscomb配置文件说明

    { "always-semicolon": true, // 总是显示分号 "block-indent": " ", // 代码块缩进,可以 ...

  3. 使用Native API 创建进程

    使用 Native API 创建进程 最近几个星期一直在研究这个题目.因为关于方面的资料比较多(可以看下面的参考文章),所以开始时以为很快就结束了.谁知道真正动起手来才发现有很多要考虑的地方,不过还好 ...

  4. C++之memset函数

    可参考: C++中memset函数的用法 C++中memset函数的用法 C++中memset()函数的用法详解 c/c++学习系列之memset()函数 透彻分析C/C++中memset函数 mem ...

  5. 02.vs插件 获取项目和解决方案路径

    获取项目 解决方案路径 /// <summary> /// 获取并设置项目和解决方案绝对路径 /// </summary> /// <returns></re ...

  6. JEECMS文库工具安装

    下载地址: Swftools下载地址 http://www.swftools.org/swftools-0.9.2.tar.gz openoffice下载地址 http://www.openoffic ...

  7. 组件:基础的基础组件(Component,Portlet)

    <!DOCTYPE html> <html lang="zh"> <head> <title></title> < ...

  8. adb环境部署及与模拟器的连接

    1.下载adt-bundle-windows-x64安装包,下载网址https://www.7down.com/soft/293453.html 2.对安装包进行解压缩 3.配置环境变量,将adb的路 ...

  9. Fiilter

    过滤器 过滤请求和响应 作用:        自动登录.        统一编码.        过滤关键字        .... Filter是一个接口 编写filter步骤: 1.编写一个类 a ...

  10. 解决wordpress 5.3更新后Uncaught Typeerror: $ is not a function

    本文不再更新,可能存在内容过时的情况,实时更新请移步原文地址:解决wordpress 5.3更新后Uncaught Typeerror: $ is not a function: 本文通过插件的办法解 ...