[HAOI2015]树上操作(luogu)

Description

题目描述

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个操作,分为三种:

  • 操作 1 :把某个节点 x 的点权增加 a 。
  • 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
  • 操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

输入格式

第一行包含两个整数 N, M 。表示点数和操作数。
接下来一行 N 个整数,表示树中节点的初始权值。
接下来 N-1 行每行两个正整数 from, to , 表示该树中存在一条边 (from, to) 。
再接下来 M 行,每行分别表示一次操作。其中第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。

输出格式

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

Solution

操作 1:线段树中点dfn[x]加a;

操作 2:由树链剖分遍历的顺序可知任何一棵子树中节点的dfs序<=子树的根的dfs序,

且最大的dfs序=子树的根的dfs序+子树的大小-1,于是可以直接在线段树上操作;

操作 3:简化版树剖求和模板

Code

#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <vector>
using namespace std;
const int N=1e5+;
struct node
{
int l,r,lc,rc;
long long sum,delay;
}f[N*];
int n,u,v,m,deep[N],tot,si[N],top[N],d[N],t,
fa[N],dfn[N],cnt,rt,son[N],re[N],opt,x;
long long a;
char s[];
vector <int> link[N];
void dfs1(int u,int f)
{
si[u]=,fa[u]=f,deep[u]=deep[f]+;
int size=link[u].size();
for(int i=;i<size;i++)
{
int v=link[u][i];
if(v!=f)
{
dfs1(v,u);
si[u]+=si[v];
if(son[u]== || si[son[u]]<si[v]) son[u]=v;
}
}
}
void dfs2(int u,int f)
{
dfn[u]=++tot,re[tot]=u;
if(son[u]!=)
{
top[son[u]]=top[u],dfs2(son[u],u);
int size=link[u].size();
for(int i=;i<size;i++)
{
int v=link[u][i];
if(v!=f && v!=son[u])
top[v]=v,dfs2(v,u);
}
}
}
long long gel(int g)
{
return f[g].r-f[g].l+;
}
void push_up(int g)
{
int lc=f[g].lc,rc=f[g].rc;
if(lc==) return ;
f[g].sum=f[lc].sum+f[rc].sum+gel(g)*f[g].delay;
}
void push_down(int g)
{
int lc=f[g].lc,rc=f[g].rc;
if(lc== || f[g].delay==) return ;
f[lc].delay+=f[g].delay,f[rc].delay+=f[g].delay;
f[lc].sum+=gel(lc)*f[g].delay,f[rc].sum+=gel(rc)*f[g].delay;
f[g].delay=;
}
void build(int &g,int l,int r)
{
g=++cnt;
f[g].l=l,f[g].r=r;
if(l==r)
{
f[g].sum=d[re[l]];
return ;
}
int mid=(l+r)>>;
build(f[g].lc,l,mid);
build(f[g].rc,mid+,r);
push_up(g);
}
void add(int g,int l,int r,int k)
{
if(f[g].l>=l && f[g].r<=r)
f[g].sum+=gel(g)*k,f[g].delay+=k;
else
{
int mid=(f[g].l+f[g].r)/;
if(r<=mid) add(f[g].lc,l,r,k);
else if(l>mid) add(f[g].rc,l,r,k);
else add(f[g].lc,l,mid,k),add(f[g].rc,mid+,r,k);
push_up(g);
}
}
long long get(int g,int l,int r)
{
if(f[g].l>=l && f[g].r<=r)
return f[g].sum;
else
{
push_down(g);
int mid=(f[g].l+f[g].r)/;
if(r<=mid) return get(f[g].lc,l,r);
else if(l>mid) return get(f[g].rc,l,r);
else return get(f[g].lc,l,mid)+get(f[g].rc,mid+,r);
}
}
long long Get(int x)
{
long long sum=;
while(x!=)
{
sum+=get(rt,dfn[top[x]],dfn[x]);
x=fa[top[x]];
}
return sum;
}
//操作 1 :把某个节点 x 的点权增加 a 。
//操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
//操作 3 :询问某个节点 x 到根的路径中所有点的点权和。
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&d[i]);
for(int i=;i<n;i++)
{
scanf("%d%d",&u,&v);
link[u].push_back(v);
link[v].push_back(u);
}
dfs1(,);
top[]=,dfs2(,);
build(rt,,tot);
while(m--)
{
scanf("%d%d",&opt,&x);
if(opt==) printf("%lld\n",Get(x));
else
{
scanf("%lld",&a);
if(a!=)
{
if(opt==) add(rt,dfn[x],dfn[x],a);
else if(opt==) add(rt,dfn[x],dfn[x]+si[x]-,a);
}
}
}
return ;
}

[HAOI2015]树上操作(树链剖分)的更多相关文章

  1. bzoj4034[HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6163  Solved: 2025[Submit][Stat ...

  2. bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4352  Solved: 1387[Submit][Stat ...

  3. 【BZOJ4034】[HAOI2015]树上操作 树链剖分+线段树

    [BZOJ4034][HAOI2015]树上操作 Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 ...

  4. BZOJ4034 [HAOI2015]树上操作 树链剖分

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4034 题意概括 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三 ...

  5. P3178 [HAOI2015]树上操作 树链剖分

    这个题就是一道树链剖分的裸题,但是需要有一个魔性操作___编号数组需要开longlong!!!震惊!真的神奇. 题干: 题目描述 有一棵点数为 N 的树,以点 为根,且树点有边权.然后有 M 个操作, ...

  6. BZOJ4034[HAOI2015]树上操作——树链剖分+线段树

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都 ...

  7. bzoj 4034: [HAOI2015]树上操作——树链剖分

    Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中 ...

  8. BZOJ 4034[HAOI2015]树上操作(树链剖分)

    Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点 ...

  9. bzoj4034 [HAOI2015]树上操作——树链剖分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4034 树剖裸题: 一定要注意 long long !!! update 的时候别忘了 pus ...

  10. [HAOI2015]树上操作-树链剖分

    #include<bits/stdc++.h> using namespace std; const int maxn = 1e6+5; #define mid ((l+r)>> ...

随机推荐

  1. PDF.JS 读取文件流前端展示 C#

    最近再搞PDF得展示问题,因为aspose.pdf成本太高,只能使用pdf.js这个开源强大的前端东东了. 在百度了很久后 网上大都是node,java,php的事例,有位大哥的是C#的后台代码按他写 ...

  2. codeforces 572(Div2)A、B、C、D1、D2、E

    Cdoeforces 572(Div2)A.B.C.D1.D2.E 传送门:https://codeforces.com/contest/1189 A.题意: 给你一串长为n的字符串,要求你将其切割为 ...

  3. Spring||Interview

    1.依赖注入(DI)(IOC) 对象本身不负责对象的创建和维护,将控制权转交给外部的容器实现,降低程序的耦合度,只提供java方法让容器决定依赖关系,依赖关系的对象通过JavaBean属性或者构造函数 ...

  4. flask迁移数据库时报错:Target database is not up的解决方案

    在flask中进行数据库迁移时报错,报错信息为"Target database is not up",解决方案如下 找到alembic的最新版本号,找到文件夹migrate下的最新 ...

  5. Ubuntu 18.04安装搜狗拼音

    首先安装fcitx 一.检测是否安装fcitx 首先检测是否有fcitx,因为搜狗拼音依赖fcitx > fcitx 提示: 程序“fcitx”尚未安装. 您可以使用以下命令安装: > s ...

  6. VC++取MD5算法记录下以后用得到(转)

    这个是网上扒下来的 作者已经无法知道是谁了 MD5.h #ifndef MD5_H #define MD5_H #include <string> #include <fstream ...

  7. ng-zorro-antd中踩过的坑

    ng-zorro-antd中踩过的坑 前端项目中,我们经常会使用阿里开源的组件库:ant-design,其提供的组件已经足以满足多数的需求,拿来就能直接用,十分方便,当然了,有些公司会对组件库进行二次 ...

  8. redis 为什么是单线程,为什么速度快。

    redis 5中存储方式 String.List.Set.Hash.ZSet这5种 数据库的工作模式按存储方式可分为: 硬盘数据库和内存数据库.Redis 将数据储存在内存里面,读写数据的时候都不会受 ...

  9. java socket通讯

    本来是打算验证java socket是不是单线程操作,也就是一次只能处理一个请求,处理完之后才能继续处理下一个请求.但是在其中又发现了许多问题,在编程的时候需要十分注意,今天就拿出来跟大家分享一下. ...

  10. BigInteger&BigDecimal类

    BigInteger类 当需要处理超过 long 数值范围的大整数时,java.math 包中的 BigInteger 类提供任意精度的整数运算. 构造方式 //构造方法,将BigInteger的十进 ...