tarjan缩点练习 洛谷P3387 【模板】缩点+poj 2186 Popular Cows
缩点练习
洛谷 P3387 【模板】缩点
解题思路:
都说是模板了...先缩点把有环图转换成DAG
然后拓扑排序即可
#include <bits/stdc++.h>
using namespace std;
/* freopen("k.in", "r", stdin);
freopen("k.out", "w", stdout); */
//clock_t c1 = clock();
//std::cerr << "Time:" << clock() - c1 <<"ms" << std::endl;
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define de(a) cout << #a << " = " << a << endl
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef vector<int, int> VII;
#define inf 0x3f3f3f3f
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll MAXN = 5e5 + 7;
const ll MAXM = 1e6 + 7;
const ll MOD = 1e9 + 7;
const double eps = 1e-6;
const double pi = acos(-1.0);
int head[MAXN], head1[MAXN];
int in[MAXN];
int n, m;
int vis[MAXN];
int dfn[MAXN], low[MAXN], dep;
int sta[MAXN], top = -1;
int tot; //强联通分量编号
int dis[MAXN];
int p[MAXN];
int num[MAXN];
struct Edge
{
int u, v, Next;
Edge(int _u = 0, int _v = 0, int _Next = 0) { u = _u, v = _v, Next = _Next; }
} e[MAXN << 1], ed[MAXN << 1];
int cnt = -1;
void add(int u, int v)
{
e[++cnt].v = v;
e[cnt].u = u;
e[cnt].Next = head[u];
head[u] = cnt;
}
void tarjan(int now)
{
dfn[now] = low[now] = ++dep;
sta[++top] = now;
vis[now] = 1;
for (int i = head[now]; ~i; i = e[i].Next)
{
int v = e[i].v;
if (!dfn[v])
{
tarjan(v);
low[now] = min(low[now], low[v]);
}
else if (vis[v])
low[now] = min(low[now], low[v]);
}
if (dfn[now] == low[now])
{
++tot;
while (sta[top] != now)
{
vis[sta[top]] = 0;
num[sta[top]] = tot;
dis[tot] += p[sta[top--]];
}
vis[sta[top]] = 0;
dis[tot] += p[sta[top]];
num[sta[top--]] = tot;
}
}
int dp[MAXN];
int topo()
{
queue<int> q;
int ans = -inf;
int k = 0;
for (int i = 1; i <= tot; i++)
if (!in[i])
q.push(i), dp[i] = dis[i];
while (!q.empty())
{
int now = q.front();
q.pop();
k++;
for (int i = head1[now]; ~i; i = ed[i].Next)
{
int v = ed[i].v;
in[v]--;
dp[v] = max(dp[v], dp[now] + dis[v]);
if (!in[v])
q.push(v);
}
}
for (int i = 1; i <= tot; i++)
ans = max(ans, dp[i]);
return ans;
}
int main()
{
memset(head, -1, sizeof(head));
memset(head1, -1, sizeof(head1));
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
scanf("%d", &p[i]);
for (int i = 0; i < m; i++)
{
int u, v;
scanf("%d%d", &u, &v);
add(u, v);
}
for (int i = 1; i <= n; i++)
if (!dfn[i])
tarjan(i);
cnt = -1;
for (int i = 0; i < m; i++)
{
int x = e[i].u, y = e[i].v;
if (num[x] != num[y]) //不在一个强连通分量
{
int u = num[x], v = num[y];
ed[++cnt].u = u;
ed[cnt].v = v;
ed[cnt].Next = head1[u];
head1[u] = cnt;
in[v]++;
}
}
printf("%d\n", topo());
return 0;
}
poj 2196 Popular Cows
Popular Cows
Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is
popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow.
Input
Line 1: Two space-separated integers, N and M
Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular.
OutputLine 1: A single integer that is the number of cows who are considered popular by every other cow.
Sample Input
3 3
1 2
2 1
2 3
Sample Output
1
解题思路:
将原图缩点之后重新建图,那么被所有牛崇拜的牛必然在出度为0的一个强连通分量内,如果有一个以上出度为0的强联通分量,则说明不存在被所有牛崇拜的牛,如果出度为0的强联通分量为1那么直接输出该强联通分量内牛的数量即可
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <set>
#include <vector>
#include <cctype>
#include <iomanip>
#include <sstream>
#include <climits>
#include <queue>
#include <stack>
using namespace std;
/* freopen("k.in", "r", stdin);
freopen("k.out", "w", stdout); */
//clock_t c1 = clock();
//std::cerr << "Time:" << clock() - c1 <<"ms" << std::endl;
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define de(a) cout << #a << " = " << a << endl
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef vector<int, int> VII;
#define inf 0x3f3f3f3f
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll MAXN = 5e5 + 7;
const ll MAXM = 1e6 + 7;
const ll MOD = 1e9 + 7;
const double eps = 1e-6;
const double pi = acos(-1.0);
int n, m;
int head[MAXN], dis[MAXN];
int in[MAXN];
struct Edge
{
int u, v, Next;
Edge(int _u = 0, int _v = 0, int _Next = 0) { u = _u, v = _v, Next = _Next; }
} e[MAXN], ed[MAXN];
int cnt = -1;
void add(int u, int v)
{
e[++cnt].u = u;
e[cnt].v = v;
e[cnt].Next = head[u];
head[u] = cnt;
}
int dfn[MAXN], low[MAXN], dep;
int tot;
int sta[MAXN], top = -1, vis[MAXN];
int num[MAXN];
void tarjan(int now)
{
dfn[now] = low[now] = ++dep;
sta[++top] = now;
vis[now] = 1;
for (int i = head[now]; ~i; i = e[i].Next)
{
int v = e[i].v;
if (!dfn[v])
{
tarjan(v);
low[now] = min(low[now], low[v]);
}
else if (vis[v])
low[now] = min(low[now], low[v]);
}
if (dfn[now] == low[now])
{
tot++;
while (sta[top] != now)
{
num[sta[top]] = tot;
dis[tot]++;
vis[sta[top--]] = 0;
}
vis[sta[top]] = 0;
dis[tot]++;
num[sta[top--]] = tot;
}
}
int main()
{
memset(head, -1, sizeof(head));
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i++)
{
int u, v;
scanf("%d%d", &u, &v);
add(u, v);
}
for (int i = 1; i <= n; i++)
if (!dfn[i])
tarjan(i);
//重新建图
for (int i = 0; i < m; i++)
{
int x = e[i].u, y = e[i].v;
if (num[x] != num[y])
{
int u = num[x], v = num[y];
in[u]++; //这里是出度....
}
}
int tt = 0;
int ans = 0;
for (int i = 1; i <= tot; i++)
{
if (!in[i])
{
tt++;
ans = max(ans, dis[i]);
}
}
if (tt > 1)
ans = 0;
printf("%d\n", ans);
return 0;
}
/*
7 8
1 2
2 4
4 6
6 7
7 6
1 3
3 5
5 6
*/
tarjan缩点练习 洛谷P3387 【模板】缩点+poj 2186 Popular Cows的更多相关文章
- poj 2186 Popular Cows (强连通分量+缩点)
http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissi ...
- poj 2186 Popular Cows 【强连通分量Tarjan算法 + 树问题】
题目地址:http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Sub ...
- poj 2186 Popular Cows【tarjan求scc个数&&缩点】【求一个图中可以到达其余所有任意点的点的个数】
Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 27698 Accepted: 11148 De ...
- POJ 2186 Popular Cows(Targin缩点)
传送门 Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 31808 Accepted: 1292 ...
- poj 2186 Popular Cows tarjan
Popular Cows Description Every cow's dream is to become the most popular cow in the herd. In a herd ...
- POJ 2186 Popular Cows tarjan缩点算法
题意:给出一个有向图代表牛和牛喜欢的关系,且喜欢关系具有传递性,求出能被所有牛喜欢的牛的总数(除了它自己以外的牛,或者它很自恋). 思路:这个的难处在于这是一个有环的图,对此我们可以使用tarjan算 ...
- POJ 2186 Popular Cows(强连通分量缩点)
题目链接:http://poj.org/problem?id=2186 题目意思大概是:给定N(N<=10000)个点和M(M<=50000)条有向边,求有多少个“受欢迎的点”.所谓的“受 ...
- [poj 2186]Popular Cows[Tarjan强连通分量]
题意: 有一群牛, a会认为b很帅, 且这种认为是传递的. 问有多少头牛被其他所有牛认为很帅~ 思路: 关键就是分析出缩点之后的有向树只能有一个叶子节点(出度为0). 做法就是Tarjan之后缩点统计 ...
- poj 2186 Popular Cows :求能被有多少点是能被所有点到达的点 tarjan O(E)
/** problem: http://poj.org/problem?id=2186 当出度为0的点(可能是缩点后的点)只有一个时就存在被所有牛崇拜的牛 因为如果存在有两个及以上出度为0的点的话,他 ...
随机推荐
- MySQL数据库性能优化:表、索引、SQL等
一.MySQL 数据库性能优化之SQL优化 注:这篇文章是以 MySQL 为背景,很多内容同时适用于其他关系型数据库,需要有一些索引知识为基础 优化目标 减少 IO 次数IO永远是数据库最容易瓶颈的地 ...
- 转载:通过监控Nginx日志来实时屏蔽高频恶意访问的IP
通过监控Nginx日志来实时屏蔽高频恶意访问的IP 目前在我的VPS上主要通过两种方式来限制ip的访问次数. 通过Nginx的limit_req配置来限制同一ip在一分钟内的访问次数 通过Ngin ...
- 中小型企业级 IPS 部署
<构建基于Snort+Guardian+Iptables的IPS> 2020年的第三天,依旧如往常写文章,分享最近做的项目继<中小型企业级防火墙部署>之后的另一部分<构建 ...
- vue实现下拉框全选和输入匹配
实际项目中的一个需求: 点击文本框,弹出带有复选框的选项,然后获取选中项的数据,传给后面的一个功能.在文本框输入内容,也会动态的匹配下拉列表,并且列表带有全选功能. 朴素的效果图: 我选择了用vue实 ...
- vux中x-input在安卓手机输入框的删除按钮(@on-click-clear-icon)点击没反应
首先看你自己的的版本好,如果在2.6.9以上,我是在git上找到的解决办法,记录一下,希望可以帮到有需要的小伙伴. 在项目中找 node_modules > vux > x-input & ...
- (推荐)linux用一键安装包
linux一键安装包内置了XXD.apache, php, mysql这些应用程序,不需要再单独安装部署. 从7.3版本开始,linux一键安装包分为32位和64位两个包,请大家根据操作系统的情况下载 ...
- 「P5004」专心OI - 跳房子 解题报告
题面 把\(N\)个无色格子排成一行,选若干个格子染成黑色,要求每个黑色格子之间至少间隔\(M\)个格子,求方案数 思路: 矩阵加速 根据题面,这一题似乎可以用递推 设第\(i\)个格子的编号为\(i ...
- C++Primer第五版 3.5.1节练习
练习 3.27:假设txt_size是一个无参数的函数,它的返回值是int.请回答下列哪个定义是非法的?为什么? Unsigned buf_size = 1024; (a) int ia[buf_si ...
- goland编辑器永久激活
1 下载goland破解文件补丁 链接: https://pan.baidu.com/s/1i3dFAwscXPzKV-1imvgkdA 提取码: furt 2 打开goland的安装文件,将下载好的 ...
- 阿里开源服务发现组件 Nacos快速入门
最近几年随着云计算和微服务不断的发展,各大云厂商也都看好了微服务解决方案这个市场,纷纷推出了自己针对微服务上云架构的解决方案,并且诞生了云原生,Cloud Native的概念. 云原生是一种专门针对云 ...