求1-n 中与 m 互质的素因子 (容斥原理)
ll prime[100];
ll cnt;
void getprime(){
cnt = 0; ll num = m;
for(ll i = 2; i*i <= m; i++){ // sqrt(m) 的复杂度求出m的素因子
if (num%i == 0) {
prime[cnt++] = i;
while(num%i == 0){
num /= i;
}
}
if (num == 1) break;
}
if (num > 1) prime[cnt++] = num;
} void solve() {
ll ans = 0;
// cnt 下标从0开始
for(ll i = 1; i < (1<<cnt); i++){
ll f = 0; ll tem = 1;
for(ll j = 0; j < cnt; j++){
if (i&(1<<j)) {
f++;
tem *= prime[j];
}
}
ll time = n/tem;
// 奇加偶减
if (f&1) ans = (ans+cal1(tem, time)+cal2(tem, time))%mod;
else ans = (ans-cal1(tem, time)-cal2(tem, time))%mod;
ans = (ans+mod)%mod;
}
ll sum = (cal1(1, n)+cal2(1, n))%mod;
ans = (sum-ans)%mod;
printf("%lld\n", (ans+mod)%mod);
}
求1-n 中与 m 互质的素因子 (容斥原理)的更多相关文章
- hdu-4135 Co-prime---容斥定理经典&&求1-m中与n互质的数目
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4135 题目大意: 求区间[a, b]中与N互质的数目. 解题思路: 首先对n求出所有素因子. 对于区 ...
- 欧拉函数(小于或等于n的数中与n互质的数的数目)&& 欧拉函数线性筛法
[欧拉函数] 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler’s totient function.φ函数.欧拉商数等. 例如φ( ...
- 一个简单的公式——求小于N且与N互质的数的和
首先看一个简单的东西. 若$gcd(i,n)=1$,则有$gcd(n-i,n)=1$ 于是在小于$n$且与$n$互质的数中,$i$与$n-i$总是成对存在,且相加等于$n$. 考虑$i=n-i$的特殊 ...
- 证明RSA算法在明文和公私钥中N不互质情况下仍然成立
关于RSA的基础过程介绍 下文中的 k 代表自然数常数,不同句子,公式中不一定代表同一个数 之前接触RSA,没有过多的思考证明过程,今天有感而发,推到了一遍 假设公钥 (e, N) , 私钥 (d, ...
- poj2773求第K个与m互质的数
//半年前做的,如今回顾一下,还是有所收货的,数的唯一分解,.简单题. #include<iostream> #include<cstring> using namespace ...
- 求小于n且与n互质的数的个数
int eu(int n){ int ans=n; for(int i=2;i*i<=n;i++) { if(n%i==0) { ans=ans/i*(i-1); while(n%i==0)n/ ...
- 容斥原理 求M以内有多少个跟N是互质的
开始系统的学习容斥原理!通常我们求1-n中与n互质的数的个数都是用欧拉函数! 但如果n比较大或者是求1-m中与n互质的数的个数等等问题,要想时间效率高的话还是用容斥原理! 本题是求[a,b]中与n ...
- (hdu step 7.2.2)GCD Again(欧拉函数的简单应用——求[1,n)中与n不互质的元素的个数)
题目: GCD Again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 【hdu4135】【hdu2841】【hdu1695】一类通过容斥定理求区间互质的方法
[HDU4135]Co-prime 题意 给出三个整数N,A,B.问在区间[A,B]内,与N互质的数的个数.其中N<=10^9,A,B<=10^15. 分析 容斥定理的模板题.可以通过容斥 ...
随机推荐
- Vue 组件切换
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- dotnet core 添加 SublimeText 编译插件
因为 SublimeText 有很多插件都是使用 Py 写的,而我想使用 dotnet core 给 SublimeText 写一个编译插件,也就是在我使用 Markdown 的时候可以点击编译,将 ...
- Tomcat最佳线程数
什么是最佳线程数? 为满足更多用户访问需求,可以调整Tomcat线程数,但是不能太大,否则导致线程切换开销,随着用户递增(线程数也随之调整),系统QPS逐渐增加,当用户量达到某个值,QPS并不会增加, ...
- H3C 聚合链路负载分担原理
- C# 对 byte 数组进行模式搜索
本文告诉大家几个方法从 byte 数组找到对应的相同序列的数组 最简单的方法是进行数值判断,但是代码最少是使用Linq ,效率比较高是使用 Boyer-Moore 算法,下面就告诉大家几个算法的代码 ...
- jQuery验证码发送时间秒递减(刷新存储cookie)
<input id="sendEmail" type="button" name="sendEmail" onclick=" ...
- lombok优缺点
优点: 能通过注解的形式自动生成构造器.getter/setter.equals.hashcode.toString等方法,提高了一定的开发效率 让代码变得简洁,不用过多的去关注相应的方法 属性做修改 ...
- The third day of Crawler learning
连续爬取多页数据 分析每一页url的关联找出联系 例如虎扑 第一页:https://voice.hupu.com/nba/1 第二页:https://voice.hupu.com/nba/2 第三页: ...
- flask修改数据库字段的类型和长度
flask修改数据库字段的类型和长度 在将models中的字段的db.String(256)修改为db.String(1024)后,执行migrate和upgrade操作后,发现数据库并没有更新, ...
- DEVOPS技术实践_02:jenkins自动构建项目
一.用户名密码错误 打开jenkins发现用户名密码错误,解决 1.1 找到config.xml文件 [root@jenkins-master ~]# ll -a drwxr-xr-x. root r ...