深度学习之反向传播算法(BP)代码实现
反向传播算法实战
本文仅仅是反向传播算法的实现,不涉及公式推导,如果对反向传播算法公式推导不熟悉,强烈建议查看另一篇文章神经网络之反向传播算法(BP)公式推导(超详细)
我们将实现一个 4
层的全连接网络,来完成二分类任务。网络输入节点数为 2
,隐藏 层的节点数设计为:25、50
和25
,输出层两个节点,分别表示属于类别 1
的概率和类别 2
的概率,如下图所示。这里并没有采用 Softmax
函数将网络输出概率值之和进行约束, 而是直接利用均方误差函数计算与 One-hot
编码的真实标签之间的误差,所有的网络激活 函数全部采用 Sigmoid
函数,这些设计都是为了能直接利用我们的梯度传播公式。
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
1. 准备数据
X, y = datasets.make_moons(n_samples=1000, noise=0.2, random_state=100)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
print(X.shape, y.shape)
(1000, 2) (1000,)
def make_plot(X, y, plot_name):
plt.figure(figsize=(12, 8))
plt.title(plot_name, fontsize=30)
plt.scatter(X[y==0, 0], X[y==0, 1])
plt.scatter(X[y==1, 0], X[y==1, 1])
make_plot(X, y, "Classification Dataset Visualization ")
2. 网络层
- 通过新建类
Layer
实现一个网络层,需要传入网络层的输入节点数、输出节点数、激 活函数类型等参数 - 权值
weights
和偏置张量bias
在初始化时根据输入、输出节点数自动 生成并初始化
class Layer:
# 全链接网络层
def __init__(self, n_input, n_output, activation=None, weights=None, bias=None):
"""
:param int n_input: 输入节点数
:param int n_output: 输出节点数
:param str activation: 激活函数类型
:param weights: 权值张量,默认类内部生成
:param bias: 偏置,默认类内部生成
"""
self.weights = weights if weights is not None else np.random.randn(n_input, n_output) * np.sqrt(1 / n_output)
self.bias = bias if bias is not None else np.random.rand(n_output) * 0.1
self.activation = activation # 激活函数类型,如’sigmoid’
self.activation_output = None # 激活函数的输出值 o
self.error = None # 用于计算当前层的 delta 变量的中间变量
self.delta = None # 记录当前层的 delta 变量,用于计算梯度
def activate(self, X):
# 前向计算函数
r = np.dot(X, self.weights) + self.bias # X@W + b
# 通过激活函数,得到全连接层的输出 o (activation_output)
self.activation_output = self._apply_activation(r)
return self.activation_output
def _apply_activation(self, r): # 计算激活函数的输出
if self.activation is None:
return r # 无激活函数,直接返回
elif self.activation == 'relu':
return np.maximum(r, 0)
elif self.activation == 'tanh':
return np.tanh(r)
elif self.activation == 'sigmoid':
return 1 / (1 + np.exp(-r))
return r
def apply_activation_derivative(self, r):
# 计算激活函数的导数
# 无激活函数, 导数为 1
if self.activation is None:
return np.ones_like(r)
# ReLU 函数的导数
elif self.activation == 'relu':
grad = np.array(r, copy=True)
grad[r > 0] = 1.
grad[r <= 0] = 0.
return grad
# tanh 函数的导数实现
elif self.activation == 'tanh':
return 1 - r ** 2
# Sigmoid 函数的导数实现
elif self.activation == 'sigmoid':
return r * (1 - r)
return r
3. 网络模型
- 创建单层网络类后,我们实现网络模型的
NeuralNetwork
类 - 它内部维护各层的网络 层
Layer
类对象,可以通过add_layer
函数追加网络层, - 实现创建不同结构的网络模型目 的。
y_test.flatten().shape
(300,)
class NeuralNetwork:
def __init__(self):
self._layers = [] # 网络层对象列表
def add_layer(self, layer):
self._layers.append(layer)
def feed_forward(self, X):
# 前向传播(求导)
for layer in self._layers:
X = layer.activate(X)
return X
def backpropagation(self, X, y, learning_rate):
# 反向传播算法实现
# 向前计算,得到最终输出值
output = self.feed_forward(X)
for i in reversed(range(len(self._layers))): # 反向循环
layer = self._layers[i]
if layer == self._layers[-1]: # 如果是输出层
layer.error = y - output
# 计算最后一层的 delta,参考输出层的梯度公式
layer.delta = layer.error * layer.apply_activation_derivative(output)
else: # 如果是隐藏层
next_layer = self._layers[i + 1]
layer.error = np.dot(next_layer.weights, next_layer.delta)
layer.delta = layer.error*layer.apply_activation_derivative(layer.activation_output)
# 循环更新权值
for i in range(len(self._layers)):
layer = self._layers[i]
# o_i 为上一网络层的输出
o_i = np.atleast_2d(X if i == 0 else self._layers[i - 1].activation_output)
# 梯度下降算法,delta 是公式中的负数,故这里用加号
layer.weights += layer.delta * o_i.T * learning_rate
def train(self, X_train, X_test, y_train, y_test, learning_rate, max_epochs):
# 网络训练函数
# one-hot 编码
y_onehot = np.zeros((y_train.shape[0], 2))
y_onehot[np.arange(y_train.shape[0]), y_train] = 1
mses = []
for i in range(max_epochs): # 训练 100 个 epoch
for j in range(len(X_train)): # 一次训练一个样本
self.backpropagation(X_train[j], y_onehot[j], learning_rate)
if i % 10 == 0:
# 打印出 MSE Loss
mse = np.mean(np.square(y_onehot - self.feed_forward(X_train)))
mses.append(mse)
print('Epoch: #%s, MSE: %f, Accuracy: %.2f%%' %
(i, float(mse), self.accuracy(self.predict(X_test), y_test.flatten()) * 100))
return mses
def accuracy(self, y_predict, y_test): # 计算准确度
return np.sum(y_predict == y_test) / len(y_test)
def predict(self, X_predict):
y_predict = self.feed_forward(X_predict) # 此时的 y_predict 形状是 [600 * 2],第二个维度表示两个输出的概率
y_predict = np.argmax(y_predict, axis=1)
return y_predict
4. 网络训练
nn = NeuralNetwork() # 实例化网络类
nn.add_layer(Layer(2, 25, 'sigmoid')) # 隐藏层 1, 2=>25
nn.add_layer(Layer(25, 50, 'sigmoid')) # 隐藏层 2, 25=>50
nn.add_layer(Layer(50, 25, 'sigmoid')) # 隐藏层 3, 50=>25
nn.add_layer(Layer(25, 2, 'sigmoid')) # 输出层, 25=>2
# nn.train(X_train, X_test, y_train, y_test, learning_rate=0.01, max_epochs=50)
def plot_decision_boundary(model, axis):
x0, x1 = np.meshgrid(
np.linspace(axis[0], axis[1], int((axis[1] - axis[0])*100)).reshape(1, -1),
np.linspace(axis[2], axis[3], int((axis[3] - axis[2])*100)).reshape(-1, 1)
)
X_new = np.c_[x0.ravel(), x1.ravel()]
y_predic = model.predict(X_new)
zz = y_predic.reshape(x0.shape)
from matplotlib.colors import ListedColormap
custom_cmap = ListedColormap(['#EF9A9A', '#FFF590', '#90CAF9'])
plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
plt.figure(figsize=(12, 8))
plot_decision_boundary(nn, [-2, 2.5, -1, 2])
plt.scatter(X[y==0, 0], X[y==0, 1])
plt.scatter(X[y==1, 0], X[y==1, 1])
<matplotlib.collections.PathCollection at 0x29018d6dfd0>
y_predict = nn.predict(X_test)
y_predict[:10]
array([1, 1, 0, 1, 0, 0, 0, 1, 1, 1], dtype=int64)
y_test[:10]
array([1, 1, 0, 1, 0, 0, 0, 1, 1, 1], dtype=int64)
nn.accuracy(y_predict, y_test.flatten())
0.86
深度学习之反向传播算法(BP)代码实现的更多相关文章
- 深度神经网络(DNN)反向传播算法(BP)
在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向 ...
- 神经网络与机器学习 笔记—反向传播算法(BP)
先看下面信号流图,L=2和M0=M1=M2=M3=3的情况,上面是前向通过,下面部分是反向通过. 1.初始化.假设没有先验知识可用,可以以一个一致分布来随机的挑选突触权值和阈值,这个分布选择为均值等于 ...
- 【机器学习】反向传播算法 BP
知识回顾 1:首先引入一些便于稍后讨论的新标记方法: 假设神经网络的训练样本有m个,每个包含一组输入x和一组输出信号y,L表示神经网络的层数,S表示每层输入的神经元的个数,SL代表最后一层中处理的单元 ...
- 深度学习——前向传播算法和反向传播算法(BP算法)及其推导
1 BP算法的推导 图1 一个简单的三层神经网络 图1所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本,通过前向运算得到 ...
- PyTorch深度学习实践——反向传播
反向传播 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 目录 反向传播 笔记 作业 笔记 在之前课程中介绍的线性 ...
- 深度学习梯度反向传播出现Nan值的原因归类
症状:前向计算一切正常.梯度反向传播的时候就出现异常,梯度从某一层开始出现Nan值(Nan: Not a number缩写,在numpy中,np.nan != np.nan,是唯一个不等于自身的数). ...
- 100天搞定机器学习|day37 无公式理解反向传播算法之精髓
100天搞定机器学习(Day1-34) 100天搞定机器学习|Day35 深度学习之神经网络的结构 100天搞定机器学习|Day36 深度学习之梯度下降算法 本篇为100天搞定机器学习之第37天,亦 ...
- 卷积神经网络(CNN)反向传播算法
在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...
- 100天搞定机器学习|day38 反向传播算法推导
往期回顾 100天搞定机器学习|(Day1-36) 100天搞定机器学习|Day37无公式理解反向传播算法之精髓 上集我们学习了反向传播算法的原理,今天我们深入讲解其中的微积分理论,展示在机器学习中, ...
随机推荐
- SpringMVC处理中文乱码
SpringMVC自带过滤器 添加至web.xml文件 <filter> <filter-name>encoding</filter-name> <filte ...
- mysql5.6创建账户不能本地登录
1.通过xshell连接linux,命令登录mysql 2.创建一个新的库(其实创建不创建都可以) 3.创建账号权限 创建账号luffy 密码luffy 针对库luffy所有权限,允许任何人远程登录 ...
- python算术
''' 1.对每个数进行平方, 2.求和 ''' print(sum(x ** 2 for x in range(4)))
- B - 青蛙的约会
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面. 它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止. 可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方 ...
- 银行贷款利率低到“令人发指”,很多人还坚持借高利贷,why?
编辑 | 于斌 出品 | 于见(mpyujian) 网络上,每隔一段时间,就会出现因为借了高利贷,家破人亡的新闻. 这种现象,层出不求,但其实,我们每次看了这些新闻,只是为其感到惋惜,并没有进一步去发 ...
- JAVA 注解教程(一)简单介绍
相关网址 https://blog.csdn.net/briblue/article/details/73824058 --- 已经整理成笔记 https://blog.csdn.net/bao199 ...
- python collections 模块 常用集合
1.nametulpe # tuple 可以表示不变集合 列如坐标 point = (1,1) # 缺点是 只可以通过下标方式访问 #namedtuple是一个函数,它用来创建一个自定义的tuple对 ...
- 通过恢复目录(Catalogue)进行PDB级别的PITR恢复
数据库版本:Oracle 12.2.0.1 本篇为<执行PDB的PITR恢复失败的说明 (文档 ID 2435452.1)>的证明篇,通过当前控制文件,无法在PDB级别进行PITR(Poi ...
- git 卡住推不上去
luoxu@lenovo:~/testGit/.git$ env | grep -i proxy 查看有没有设置代理 ALL_PROXY=socks://127.0.0.1:1080/ no_prox ...
- jmeter 登陆--查询存在否-->新建客户-->查询存在否 + 压测
1.登陆 正则表达式提取器和json提取器,都是后置处理器提取token(都可以在响应中以regexp tester 和 json path tester查看提取的对不对) beanshell 后置处 ...