hive on spark 编译时遇到的问题
1.官方网站下载spark 1.5.0的源码
2.根据官方编译即可。
export MAVEN_OPTS="-Xmx2g -XX:MaxPermSize=512M -XX:ReservedCodeCacheSize=512m" build/mvn -Pyarn -Phadoop-2.6 -Dhadoop.version=2.6.0 -DskipTests clean package
./make-distribution.sh --name custom-spark --tgz -Phadoop-2.6 -Pyarn
如你使用的版本是scala2.11 可以做以下操作
./dev/change-scala-version.sh 2.11 mvn -Pyarn -Phadoop-2.4 -Dscala-2.11 -DskipTests clean package
不用再执行 ./make-distribution.sh --name custom-spark --tgz -Phadoop-2.4 -Pyarn
然后将./assembly/target/scala-2.11/ spark-assembly-1.5.0-hadoop2.6.0.jar 大约137MB 将其拷贝到$HIVE_HOME/lib下 hive 启动后,
可以执行 set hive.execution.engine=spark; 即可
调试中遇到的问题: 一定要调YARN的内存,否则会获取不到资源
YARN: Diagnostic Messages for this Task: Container [pid=7830,containerID=container_1397098636321_27548_01_000297] is running beyond physical memory limits. Current usage: 2.1 GB of 2 GB physical memory used; 2.7 GB of 4.2 GB virtual memory used. Killing container. Dump of the process-tree for container_1397098636321_27548_01_000297 : |- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS) SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE |- 7830 7816 7830 7830 (java) 2547 390 2924818432 539150 /export/servers/jdk1.6.0_25/bin/java -Djava.net.preferIPv4Stack=true -Dhadoop.metrics.log.level=WARN -Xmx2224m -Djava.io.tmpdir=/data2/nm/local/usercache/admin/appcache/application_1397098636321_27548/container_1397098636321_27548_01_000297/tmp -Dlog4j.configuration=container-log4j.properties......
检查yarn-site-xml job内存限制 <property> <name>yarn.scheduler.minimum-allocation-mb</name> <value>2048</value> </property>
解决方法: 1.增加yarn.scheduler.minimum-allocation-mb内存上限。 2.--hiveconf mapred.child.java.opts=-Xmx????m 一定要小于yarn.scheduler.minimum-allocation-mb
如果是vm超了,如下:调整yarn.nodemanager.vmem-pmem-ratio
查看log没有明显的ERROR,但存在类似以下描述的日志 2012-05-16 13:08:20,876 INFO org.apache.hadoop.yarn.server.nodemanager.NodeStatusUpdaterImpl: Sending out status for container: container_id {, app_attempt_id {, application_id {, id: 18, cluster_timestamp: 1337134318909, }, attemptId: 1, }, id: 6, }, state: C_COMPLETE, diagnostics: "Container [pid=15641,containerID=container_1337134318909_0018_01_000006] is running beyond virtual memory limits. Current usage: 32.1mb of 1.0gb physical memory used; 6.2gb of 2.1gb virtual memory used. Killing container.\nDump of the process-tree for container_1337134318909_0018_01_000006 :\n\t|- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS) SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE\n\t| - 15641 26354 15641 15641 (java) 36 2 6686339072 8207 /home/zhouchen.zm/jdk1.6.0_23/bin/java 原因: 该错误是YARN的虚拟内存计算方式导致,上例中用户程序申请的内存为1Gb,YARN根据此值乘以一个比例(默认为2.1)得出申请的虚拟内存的值, 当YARN计算的用户程序所需虚拟内存值大于计算出来的值时,就会报出以上错误。调节比例值可以解决该问题。具体参数为:yarn-site.xml中的yarn.nodemanager.vmem-pmem-ratio
------QIN XIAO YAN -------------- <!-- Site specific YARN configuration properties -->
<!-- Site specific YARN configuration properties -->
<property>
<description>The hostname of the RM.</description>
<name>yarn.resourcemanager.hostname</name>
<value>qxy1</value>
</property>
<property>
<description>The address of the applications manager interface in the RM.</description>
<name>yarn.resourcemanager.address</name>
<value>${yarn.resourcemanager.hostname}:8032</value>
</property>
<property>
<description>List of directories to store localized files in. An
application's localized file directory will be found in:
${yarn.nodemanager.local-dirs}/usercache/${user}/appcache/application_${appid}.
Individual containers' work directories, called container_${contid}, will
be subdirectories of this.
</description>
<name>yarn.nodemanager.local-dirs</name>
<value>${hadoop.tmp.dir}/nm-local-dir</value>
</property> <property>
<description>Amount of physical memory, in MB, that can be allocated
for containers.</description>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>4096</value>
</property> <property>
<description>Ratio between virtual memory to physical memory when
setting memory limits for containers. Container allocations are
expressed in terms of physical memory, and virtual memory usage
is allowed to exceed this allocation by this ratio.
</description>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>2.1</value>
</property> <property>
<description>Number of vcores that can be allocated
for containers. This is used by the RM scheduler when allocating
resources for containers. This is not used to limit the number of
physical cores used by YARN containers.</description>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>8</value>
</property> <property>
<description>The class to use as the resource scheduler.</description>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property> <property>
<description>The minimum allocation for every container request at the RM,
in MBs. Memory requests lower than this will throw a
InvalidResourceRequestException.</description>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>2048</value>
</property> <property>
<description>The maximum allocation for every container request at the RM,
in MBs. Memory requests higher than this will throw a
InvalidResourceRequestException.</description>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>4096</value>
</property> <property>
<description>Path to file with nodes to include.</description>
<name>yarn.resourcemanager.nodes.include-path</name>
<value></value>
</property> <property>
<description>
Where to store container logs. An application's localized log directory
will be found in ${yarn.nodemanager.log-dirs}/application_${appid}.
Individual containers' log directories will be below this, in directories
named container_{$contid}. Each container directory will contain the files
stderr, stdin, and syslog generated by that container.
</description>
<name>yarn.nodemanager.log-dirs</name>
<value>${yarn.log.dir}/userlogs</value>
</property> <property>
<description>Time in seconds to retain user logs. Only applicable if
log aggregation is disabled
</description>
<name>yarn.nodemanager.log.retain-seconds</name>
<value>10800</value>
</property> <property>
<description>Where to aggregate logs to.</description>
<name>yarn.nodemanager.remote-app-log-dir</name>
<value>/tmp/logs</value>
</property>
<property>
<description>The remote log dir will be created at
{yarn.nodemanager.remote-app-log-dir}/${user}/{thisParam}
</description>
<name>yarn.nodemanager.remote-app-log-dir-suffix</name>
<value>logs</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
SRARK 启动时报如下错误: Error: A JNI error has occurred, please check your installation and try again
1. SPARK_DIST_CLASSPATH=$(/home/hadoop/hadoop-2.7.2/bin/hadoop classpath)
2. 解决办法:
3. export SCALA_HOME=/opt/scala-2.11.8 4. export SPARK_MASTER_IP=192.168.233.159 5. export SPARK_WORKER_MEMORY=1g 6. export HADOOP_CONF_DIR=/opt/hadoop-2.6.2/etc/hadoop 7. export JAVA_HOME=/opt/jdk1.8.0_77 8. export SPARK_DIST_CLASSPATH=$(/opt/hadoop-2.6.2/bin/hadoop classpath) ##加这条
hive on spark 编译时遇到的问题的更多相关文章
- Hive扩展功能(七)--Hive On Spark
软件环境: linux系统: CentOS6.7 Hadoop版本: 2.6.5 zookeeper版本: 3.4.8 主机配置: 一共m1, m2, m3这五部机, 每部主机的用户名都为centos ...
- Hive On Spark环境搭建
Spark源码编译与环境搭建 Note that you must have a version of Spark which does not include the Hive jars; Spar ...
- Spark记录-源码编译spark2.2.0(结合Hive on Spark/Hive on MR2/Spark on Yarn)
#spark2.2.0源码编译 #组件:mvn-3.3.9 jdk-1.8 #wget http://mirror.bit.edu.cn/apache/spark/spark-2.2.0/spark- ...
- Spark入门实战系列--2.Spark编译与部署(下)--Spark编译安装
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .编译Spark .时间不一样,SBT是白天编译,Maven是深夜进行的,获取依赖包速度不同 ...
- Spark编译及spark开发环境搭建
最近需要将生产环境的spark1.3版本升级到spark1.6(尽管spark2.0已经发布一段时间了,稳定可靠起见,还是选择了spark1.6),同时需要基于spark开发一些中间件,因此需要搭建一 ...
- 【原创】大数据基础之Hive(5)hive on spark
hive 2.3.4 on spark 2.4.0 Hive on Spark provides Hive with the ability to utilize Apache Spark as it ...
- hive使用spark引擎的几种情况
使用spark引擎查询hive有以下几种方式:1>使用spark-sql(spark sql cli)2>使用spark-thrift提交查询sql3>使用hive on spark ...
- Hive数据分析——Spark是一种基于rdd(弹性数据集)的内存分布式并行处理框架,比于Hadoop将大量的中间结果写入HDFS,Spark避免了中间结果的持久化
转自:http://blog.csdn.net/wh_springer/article/details/51842496 近十年来,随着Hadoop生态系统的不断完善,Hadoop早已成为大数据事实上 ...
- Hive On Spark保姆级攻略
声明: 此博客参考了官网的配置方式,并结合笔者在实践网上部分帖子时的踩坑经历整理而成 这里贴上官方配置说明: [官方]: https://cwiki.apache.org//confluence/di ...
随机推荐
- 一键部署k8s 、docker 工具集——最新版本
- Java 设置Word页边距、页面大小、页面方向、页面边框
本文将通过Java示例介绍如何设置Word页边距(包括上.下.左.右).页面大小(可设置Letter/A3/A4/A5/A6/B4/B5/B6/Envelop DL/Half Letter/Lette ...
- vue-cookies
vue-cookies用于登录,一般和vuex一起使用 vuex在各个组件共享值,cookie恒久保留值 一.安装 npm install vue-cookies --save 二.引用(在store ...
- [bzoj2004] [洛谷P3204] [Hnoi2010] Bus 公交线路
Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距 离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决 ...
- CDH大数据平台搭建终极版
经过无数次的失败,终于将CDH安装到两台普通的笔记本电脑上,主要失败原因有以下几点: 不熟悉安装过程,官方给出的安装方法有三种,所以都尝试了一遍,浪费了大量时间,所以有时候方法多不见得是一件好事. 安 ...
- mysql输出到页面MVC模式
上一篇文章我提到过在jsp页面不好 这篇文章讲的就是界面和代码分离,可以初步实现两个或三个人合作完成一个项目 好,废话不多说,进正题 这次又四个步骤 第一步,新建项目,新建实体类 第二步,新建数据库, ...
- 使用Gradle构建springboot多模块项目,并混合groovy开发
idea设置本地gradle 打包: build.gradle //声明gradle脚本自身需要使用的资源,优先执行 buildscript { ext { springBootVersion = ' ...
- static静态变量在c++类中的应用实例
这个static 如果写在类中,那么就可以得到一个局部的静态变量,也就是说可以实现在类内保存某个特殊值不随函数释放而消失的作用.应用中由于赋初值的位置不对而报错,错误提示为:“无法解析外部符号 ... ...
- Java虚拟机系列一:一文搞懂 JVM 架构和运行时数据区
前言 之前写博客一直比较随性,主题也很随意,就是想到什么写什么,对什么感兴趣就写什么.虽然写起来无拘无束,自在随意,但也带来了一些问题,每次写完一篇后就要去纠结下一篇到底写什么,看来选择太多也不是好事 ...
- 类加载之 <clinit>() 和 <init>()
前序文章:深入理解Java类加载 <clinit>() 与 <init>() 区别 一.<clinit>() Java 类加载的初始化过程中,编译器按语句在源文件中 ...