235. Lowest Common Ancestor of a Binary Search Tree

公共的祖先必定大于左点小于右点,否则不断递归到合适。

class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if ((root -> val > p -> val) && (root -> val > q -> val)) {
return lowestCommonAncestor(root -> left, p, q);
}
if ((root -> val < p -> val) && (root -> val < q -> val)) {
return lowestCommonAncestor(root -> right, p, q);
}
return root;
}
}; ///////////////////////////////// class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
TreeNode* cur = root;
while (true) {
if ((cur -> val > p -> val) && (cur -> val > q -> val)) {
cur = cur -> left;
} else if ((cur -> val < p -> val) && (cur -> val < q -> val)) {
cur = cur -> right;
} else {
return cur;
}
}
}
};

257. Binary Tree Paths

void binaryTreePaths(vector<string>& result, TreeNode* root, string t) {
if(!root->left && !root->right) {
result.push_back(t);
return;
} if(root->left) binaryTreePaths(result, root->left, t + "->" + to_string(root->left->val));
if(root->right) binaryTreePaths(result, root->right, t + "->" + to_string(root->right->val));
} vector<string> binaryTreePaths(TreeNode* root) {
vector<string> result;
if(!root) return result; binaryTreePaths(result, root, to_string(root->val));
return result;
}

258. Add Digits

Iteration method

  class Solution(object):
def addDigits(self, num):
"""
:type num: int
:rtype: int
"""
while(num >= 10):
temp = 0
while(num > 0):
temp += num % 10
num /= 10
num = temp
return num
Digital Root this method depends on the truth: N=(a[0] * 1 + a[1] * 10 + ...a[n] * 10 ^n),and a[0]...a[n] are all between [0,9] we set M = a[0] + a[1] + ..a[n] and another truth is that: 1 % 9 = 1 10 % 9 = 1 100 % 9 = 1 so N % 9 = a[0] + a[1] + ..a[n] means N % 9 = M so N = M (% 9) as 9 % 9 = 0,so we can make (n - 1) % 9 + 1 to help us solve the problem when n is 9.as N is 9, ( 9 - 1) % 9 + 1 = 9

///就是一个数的数根等于该数各位数的和的mod 9
/// (num-1)%9+1 等于 num%9,这为了解决9的树根时9而不是0的问题
class Solution(object):
def addDigits(self, num):
"""
:type num: int
:rtype: int
"""
if num == 0 : return 0
else:return (num - 1) % 9 + 1

263. Ugly Number

bool isUgly(int num) {
if(num == ) return false; while(num% == ) num/=;
while(num% == ) num/=;
while(num% == ) num/=; return num == ;
}

268. Missing Number

1.XOR
相同则为0。num[]的数字和下标一样
public int missingNumber(int[] nums) { //xor
int res = nums.length;
for(int i=0; i<nums.length; i++){
res ^= i;
res ^= nums[i];
}
return res;
}
2.SUM
public int missingNumber(int[] nums) { //sum
int len = nums.length;
int sum = (0+len)*(len+1)/2;
for(int i=0; i<len; i++)
sum-=nums[i];
return sum;
}
3.Binary Search
public int missingNumber(int[] nums) { //binary search
Arrays.sort(nums);
int left = 0, right = nums.length, mid= (left + right)/2;
while(left<right){
mid = (left + right)/2;
if(nums[mid]>mid) right = mid;
else left = mid+1;
}
return left;
}
Summary:
If the array is in order, I prefer Binary Search method. Otherwise, the XOR method is better.

283. Move Zeroes

class Solution {
public:
void moveZeroes(vector<int>& nums) {
int j = ;
// move all the nonzero elements advance
for (int i = ; i < nums.size(); i++) {
if (nums[i] != ) {
nums[j++] = nums[i];
}
}
for (;j < nums.size(); j++) {
nums[j] = ;
}
}
};

290. Word Pattern

Input: pattern = "abba", str = "dog cat cat dog"
Output: true
bool wordPattern(string pattern, string str) {
map<char, int> p2i;
map<string, int> w2i;
istringstream in(str);
int i = , n = pattern.size();
for (string word; in >> word; ++i) {
if (i == n || p2i[pattern[i]] != w2i[word])
return false;
p2i[pattern[i]] = w2i[word] = i + ;
}
return i == n;
}

leetcode 235-290 easy的更多相关文章

  1. (easy)LeetCode 235.Lowest Common Ancestor of a Binary Search Tree

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  2. [LeetCode] 235. Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最小共同父节点

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  3. LeetCode 235. 二叉搜索树的最近公共祖先 32

    235. 二叉搜索树的最近公共祖先 235. Lowest Common Ancestor of a Binary Search Tree 题目描述 给定一个二叉搜索树,找到该树中两个指定节点的最近公 ...

  4. LeetCode 235. 二叉搜索树的最近公共祖先

    235. 二叉搜索树的最近公共祖先 题目描述 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q,最近公共祖先 ...

  5. LeetCode 235. Lowest Common Ancestor of a Binary Search Tree (二叉搜索树最近的共同祖先)

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  6. 【一天一道LeetCode】#290. Word Pattern

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given a ...

  7. leetcode 235. Lowest Common Ancestor of a Binary Search Tree 236. Lowest Common Ancestor of a Binary Tree

    https://www.cnblogs.com/grandyang/p/4641968.html http://www.cnblogs.com/grandyang/p/4640572.html 利用二 ...

  8. 【leetcode】290. Word Pattern

    problem 290. Word Pattern 多理解理解题意!!! 不过博主还是不理解,应该比较的是单词的首字母和pattern的顺序是否一致.疑惑!知道的可以分享一下下哈- 之前理解有误,应该 ...

  9. leetcode 235 236 二叉树两个节点的最近公共祖先

    描述: 给定二叉树两个节点,求其最近公共祖先.最近即所有公共祖先中深度最深的. ps:自身也算自身的祖先. 235题解决: 这是二叉搜索树,有序的,左边小右边大. TreeNode* lowestCo ...

  10. 【Leetcode】【Easy】String to Integer (atoi)

    Implement atoi to convert a string to an integer. Hint: Carefully consider all possible input cases. ...

随机推荐

  1. SpringBoot学习笔记(七):SpringBoot使用AOP统一处理请求日志、SpringBoot定时任务@Scheduled、SpringBoot异步调用Async、自定义参数

    SpringBoot使用AOP统一处理请求日志 这里就提到了我们Spring当中的AOP,也就是面向切面编程,今天我们使用AOP去对我们的所有请求进行一个统一处理.首先在pom.xml中引入我们需要的 ...

  2. Java对象的存活判断

    Java对象的回收是有依据的,普通的方式是计算法,比如被引用,对象计数器➕1,不被引用,➖1,回收的时候,发现是0则清除,但是不能解决两个对象互相被引用的情况,Java采用可达性分析,通过某个对象作为 ...

  3. PKU_3624(0-1背包)

    题目:http://poj.org/problem?id=3624 分析:这是一个0-1背包的问题. #include<stdio.h>#include<string.h>in ...

  4. GetCommandLine CmdLineToArgvW

    说明:LPTSTR GetCommandLine(VOID); LPWSTR * CommandLineToArgvW(                                        ...

  5. SolrCloud4.7.1分布式部署

    一.环境 软件: apache-tomcat-7.0.53.tar.gz solr-4.7.1.tgz zookeeper-3.4.6.tar.gz   规划: 三个节点IP: 192.168.50. ...

  6. csp-s模拟43,44 A,C,F

    题面:https://www.cnblogs.com/Juve/articles/11534880.html A: T可以写成如下形式:$T=b^k*S+m*a$, 其中$m=\sum\limits_ ...

  7. HZOI20190817模拟24

    题面:https://www.cnblogs.com/Juve/articles/11369181.html A:Star Way To Heaven 考场上以为只能走直线,于是挂掉了. 有一种方法是 ...

  8. RN 环境搭建 运行demo App

    1.环境搭建 1.1 JDK 1.2Android JDK  需要安装c++环境(我选择安装android studio) 1.3Node npm config set registry https: ...

  9. 机器学习之五 正则化的线性回归-岭回归与Lasso回归

    机器学习之五 正则化的线性回归-岭回归与Lasso回归 注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基 ...

  10. 深入浅出 Java Concurrency (14): 锁机制 part 9 读写锁 (ReentrantReadWriteLock) (2)[转]

    这一节主要是谈谈读写锁的实现. 上一节中提到,ReadWriteLock看起来有两个锁:readLock/writeLock.如果真的是两个锁的话,它们之间又是如何相互影响的呢? 事实上在Reentr ...