所谓二分图,是可以分为两个点集的图;

所谓二分图最大匹配,是两个点集之间,每两个不同点集的点连接,每个点只能连一个点,最大的连接数就是最大匹配。

如何解最大匹配,需要用到匈牙利算法。

另:本文写了很多细节,有的地方比较啰嗦,请大佬放过


匈牙利算法是一个递归的过程,它的特点,我觉得可以归为一个字:“让”。

例如这张图,按照匈牙利算法的思路就是:

1.1与5匹配,5没有被标记,将5标记,记录1与5匹配

2.清空标记

3.2与5匹配,5没有被标记,将5标记,发现5已经与1匹配,在[此处]重新递归1:

  ①1与5匹配,发现5已经被标记,跳出

  ②1与7匹配,发现7没有被标记,将7标记,记录1与7匹配,返回成功

4.回到2与5匹配的[此处],发现返回成功,则直接记录2与5匹配

5.清空标记

6.3与5匹配,5没有被标记,将5标记,发现5已经与2匹配,在[此处]重新递归2:

  ①2与5匹配,发现5已经被标记,跳出

  ②2没有其他连接的边了,返回失败

7.回到3与5匹配的[此处],发现返回失败,继续查找与3连接的边

8.3与6匹配,6没有被标记,将6标记,记录3与6匹配

9.清空标记

9.4与7匹配,7没有被标记,将7标记,发现7已经与1匹配,在[此处]重新递归1:

  ①1与5匹配,5没有被标记,将5标记,发现5已经与2匹配,在[此处A]重新递归2:

    ①2与5匹配,发现5已经被标记,跳出

    ②2没有连接的边了,返回失败

  ②回到1与5匹配的[此处A],发现返回失败,继续查找1连接的边

  ③1与7匹配,发现7已经被标记,跳出

  ④1没有可以连接的边了,返回失败

10.回到4与7匹配的[此处],发现返回失败,继续查找与4连接的边

11.4与8匹配,8没有被标记,将8标记,记录4与8匹配

12.清空标记

13.左边的点集枚举完毕,从记录中得到:1与7匹配,2与5匹配,3与6匹配,4与8匹配

这就是匈牙利算法(这就是人脑编译器吗)

用人话来说,就是

1:诶,你看我找到我连接的第一个,是一个没人占据的点啊,我和5匹配吧

2:诶,你看我找到我连接的第一个就是5,竟然被1占据了!可恶,1你再去找找有没有别的边去匹配!

1:我要匹配5!

2:这是我要匹配的!

1:好吧,我看看,我连接的第二个,是一个没人占据的边啊,我和7匹配吧

2:好棒啊,那我就和5匹配了

3:我连接的第一个边是5,居然被2占据了,2你去看看有没有别的边匹配啊

2:好,我第一个连接的点就是5,我要连接5!

3:我要和5匹配!泥奏凯!

2:好吧,那我连接的第二个点。。没有第二个点,我只有匹配5了!!!

3:我去,这么不凑巧,那好吧,我只好找找我连接的第二个点了,只有6了,6还没有被人占据,我捷足先登,嘿嘿嘿

4:我第一个连接的点是7,竟然被1占据了, 可恶,1给我等着,你去看看有没有别的边

1:我第一个连接的点是5,但是被2占据了,如果想让我给你挪腾地方的话,我只好先让2换个地方

2:那么我第一个连接的点是5,1你要用的话我就不可以匹配它。我没有第二个连接的点,因此1对不起,我不能给你挪腾地方

1:那好吧,那么我第二个连接的点是7——

4:我要这个点啊!本来我的目的就是让你挪腾地方离开7啊

1:那我没地可以挪腾了,爱能莫助啊~~~

4:那好吧,看看我连接的第二个点8,看来这个点没有被人占据,那么我就和它匹配

至此,所有的点都找到归属了。

(这tm不就是翻译过来吗,哪有正常人这么说话)

咳咳咳,anyway,匈牙利算法就是这样一个神奇的算法。

总结一下,从某种意义上来说,匈牙利算法算是一个动态规划。

为了读者理解方便,这里规定:我们枚举的点集用小写字母表示,另一个点集用大写字母表示。

因为由它的递归结构决定,只要一个点当前要匹配的点(设它为A)与另外的点(设它为B)要与同一个点(设它为c)匹配(为什么它们都要与c匹配的原因就是A是按照顺序依次匹配的,每一个A连接的点都要被依次尝试,由于匈牙利算法的内容决定的它的性质,因此无论顺序如何最后得到的都是最优的局面),那么A可以在B找到除了c以外的其它匹配的前提下达成对于A的最优局面,即A匹配c,B匹配另外的点。这样原来的匹配数不变,又增加了一条匹配。

如果B通过递归无法找到其它匹配,那么如果舍弃B这个匹配换上A的匹配,并不会增加匹配数。因此,这个策略是最优的。

但是这样说还不够,为什么就能保证A以前的匹配都是最优的呢?这样就必须说说B的递归匹配过程。

A要匹配c,那么让B与除了C以外的点匹配。如果B直接找到了未匹配的点(除了c,下同),那么直接匹配。如果B没有直接找到未匹配的点,那么B连接的边一定都是已经匹配其它点的。那么B就会尝试改变B要匹配的点(设它为d)的匹配的点(设它为E)的匹配,与A让B更换匹配一样,让E更换匹配为除了d以外的匹配点,这样B就可以得到d这个点的匹配了。然后,E重复B的过程......如此这般,如果一直找不到可以直接匹配的点的话,可以回溯到第一次匹配。这样,所有的匹配都会更换为:「在不改变原有匹配数的情况下,对A最优的局面,也就是对A匹配c最优的局面」,因此,每次匹配,总是会造成对当前局面的最优的匹配,如果局部不是最优,那么一旦涉及到需要这块局部最优的时候,这块将会同样被回溯到然后更改为最优。(这里的最优都是指的对当前局面的最优)。

当然,相信有聪明的同学已经想到,如果这样匹配的话,万一整个二分图不是联通图怎么办。很简单,如果按照上面代码的写法,每个连通块相当于一个二分图,每个二分图的匹配按照上面的写法总是最优的,最后的统计最大匹配只需要把每个连通块的最大匹配相加就可以了。

太长不看版:牵一发,动全身。每一次的尝试匹配的操作都会造成对当前整个图的匹配的调整,无论之前是怎样的图,最后都会被调整到对当前匹配最有利的图。

至于如何证明它的正确性,必须要这样一个东西来帮助我们:

增广路,它的性质是:(匹配点/边用1表示,非匹配点/边用0表示,N表示点/边的个数)

第一条边是非匹配边,然后到匹配边,然后到非匹配边......最后的边一定是非匹配边,并且边的个数一定是奇数。(01010101...0,N mod 2 ≠ 0)

那么匈牙利算法的实质,或者说另一种形式,就是不断寻找增广路来扩大匹配。

(我看的书上并没有增广路和匈牙利算法的关系,那么在这里详细说明是如何寻找增广路的)

在上面的描述中,我们知道,匈牙利算法的基本结构是枚举一个点集,通过上述方式“让”出最大匹配。

但是在“让”的过程中,我们发现,之前的操作,实际上都符合寻找增广路的方法。

例如,我们在匹配2的过程中(请回顾之前的模拟匈牙利算法的那段),

增广路的第一个点是2,接着经过那些操作,与2匹配的点是5,那么第二个点就是5。而之前与5匹配的点是1,1现在又7匹配。

则为:2->5->1->7

如果我们把更换匹配之前的匹配边称作匹配边,会发现:

2->5在更换匹配之前没有匹配,为非匹配边。

5->1在更换匹配之前是匹配的,为匹配边。

1->7在更换之前是没有匹配的,为非匹配边。

正好符合我们的增广路定义!其中,1->7就是我们增加的边。

为什么会这样?

让我们再来解说一次,用红色和蓝色来区分增广路和“让”的方法:

为了说明方便,这里假设最后匹配到了可以直接匹配的点,也就是说增广路发现成功

首先,增广路的第一个边必定是非匹配边。

我们枚举点集的时候必定没有枚举过当前枚举的点(设它为P),那么P之前没有与任何边匹配,所以与P相连的边是非匹配边,设与P相连的点为i。

如果i原来不是匹配点,那么这条增广路已经结束,不存在第二条边,最后一条边是非匹配边。

然后,增广路的第二条边必定是匹配边,最后一条边必定是非匹配边。

同上,如果P连接的i原来不是匹配点,则增广路结束,第二条边不存在,而第一条边也是最后一条边,也符合定义。

如果i原来是匹配点,设X为i原来匹配的点,因为P为非匹配点,则X≠P,则X必定是这条增广路的第三个点,则这条边,也就是第二条边,是匹配边。

接着,增广路的第三条边必定是非匹配边

这儿分两种情况,第一是X更换到的点(设它为y)是非匹配点,可以直接匹配,那么因为y是非匹配点,则X->y是非匹配边,符合定义。

第二是y已经匹配了,由于X原来是匹配点,而一个点只能匹配一个点,X已经与i匹配,则y原来必定与X不匹配,则这条边(X->y)原来必定不是匹配边。符合定义。

...剩下同理

因此,只要最后找到了未匹配点,都算找到了增广路。

---------------------------

模板题HDU - 1083

#include <cstdio>
#include <cstring> const int MaxN = ; int ask[MaxN];
int vis[MaxN][MaxN];
int matched[MaxN];
int n,m;//n:课程人数,m:学生人数
int ans; bool find(int from)
{
for(int i = ; i <= m; i++){
if(vis[from][i]){
if(!ask[i]){
ask[i] = ; if(!matched[i] || find (matched[i])){
matched[i] = from;
return ;
} } } }
return ; } void match(){
int count = ; memset(matched,,sizeof(matched)); for(int i = ; i <= n; i++){
memset(ask,,sizeof(ask)); if(find(i))
count ++; } ans = count ;
} int main()
{
int data_p;
scanf("%d",&data_p);
while(data_p--){ scanf("%d%d",&n,&m); for(int i = ; i <= m; i++){
int num = ; scanf("%d",&num);
for(int j = ; j <= num; j++){
int tmp;
scanf("%d",&tmp);
vis[i][tmp] = ; }
} match(); if(ans == n){
printf("YES\n");
}
else{
printf("NO\n");
}
memset(vis,,sizeof(vis));
ans = ;
} return ;
}

先在match函数中枚举每个左集的点,每个左集的点调用Find函数。

Find中,枚举右集的点,找匹配,将匹配到的点标记,如果这个标记了的点没有被匹配或者递归上去能找到其他点匹配,那么就把当前点匹配。

最后,记录matched数组中的个数,即为最大匹配。

---------------------------

HDU - 3729

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm> const int MaxN = ; struct EDGE{
int to,nxt;
}edge[MaxN];
int head[];//[]点最后一个连接的边
int e_num;//边的数量 void add(int u,int v){
edge[++e_num].to = v;
edge[e_num].nxt = head[u]; head[u] = e_num;
} int n,ans;
bool ask[MaxN];
int matched[MaxN];
int q[MaxN]; bool Find(int u){
for(int i = head[u]; i ; i = edge[i].nxt){
//if(edge[u][i]){
if(!ask[edge[i].to]){
ask[edge[i].to] = ; //printf("new : %d->%d\n",u,edge[i].to); if(!matched[edge[i].to] || Find(matched[edge[i].to])){
matched[edge[i].to] = u;
//printf("best match! %d|%d\n",u,i); //printf("matched[%d] = %d\n",i,matched[i]); return true;
}
}
//}
} return false;
} void match(){
memset(matched,,sizeof(matched)); int count = ; for(int i = n; i >= ; i --){
memset(ask,,sizeof(ask));
if(Find(i))
count ++;
} ans = count;
} int main()
{ int data_n;
scanf("%d",&data_n);
while(data_n--){ memset(edge,,sizeof(edge));
memset(head,,sizeof(head));
e_num = ; scanf("%d",&n);
for(int i = ; i <= n; i++){
int x1,x2;
scanf("%d%d",&x1,&x2);
for(int j = x1; j <= x2; j++){
//edge[i][j] = 1;
add(i,j);
}
}
/*debug
for(int i = 1; i <= n; i++){
for(int j = head[i] ; j ; j = edge[j].nxt){
printf("%d - > %d\n",i,edge[j].to); } }
//debug*/ match(); printf("%d\n",ans); int cnt = ; memset(q,,sizeof(q)); for(int j = ; j <= ; j++){
if(matched[j]){
q[++cnt] = matched[j];
}
} std::sort(q+,q+cnt+); for(int j = ; j <= cnt; j++){
printf("%d",q[j]);
if(j != cnt)
printf(" "); //printf("|end|");
} //if(data_n != 0)
printf("\n"); } return ;
}
/*
2
4
5004 5005
5005 5006
5004 5006
5004 5006
7
4 5
2 3
1 2
2 2
4 4
2 3
3 4
*/

几乎是模板题,只不过数据有10万,并且需要最大字典序输出,只需要把之前的邻接矩阵改成邻接表即可提高速度,

只要把左集倒序枚举即可得到最大字典序答案。


窃以为理解透彻了,将思路全部放上来,可能有些啰嗦。

写到后面脑子很乱,不知道该如何表达,不对地方还请指正

【OI】二分图最大匹配的更多相关文章

  1. POJ 2226二分图最大匹配

    匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名.匈牙利算法是基于Hall定理中充分性证明的思想,它是二部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图 ...

  2. POJ2239 Selecting Courses(二分图最大匹配)

    题目链接 N节课,每节课在一个星期中的某一节,求最多能选几节课 好吧,想了半天没想出来,最后看了题解是二分图最大匹配,好弱 建图: 每节课 与 时间有一条边 #include <iostream ...

  3. poj 2239 二分图最大匹配,基础题

    1.poj 2239   Selecting Courses   二分图最大匹配问题 2.总结:看到一个题解,直接用三维数组做的,很巧妙,很暴力.. 题意:N种课,给出时间,每种课在星期几的第几节课上 ...

  4. UESTC 919 SOUND OF DESTINY --二分图最大匹配+匈牙利算法

    二分图最大匹配的匈牙利算法模板题. 由题目易知,需求二分图的最大匹配数,采取匈牙利算法,并采用邻接表来存储边,用邻接矩阵会超时,因为邻接表复杂度O(nm),而邻接矩阵最坏情况下复杂度可达O(n^3). ...

  5. 二分图最大匹配的K&#246;nig定理及其证明

     二分图最大匹配的K?nig定理及其证明 本文将是这一系列里最短的一篇,因为我只打算把K?nig定理证了,其它的废话一概没有.    以下五个问题我可能会在以后的文章里说,如果你现在很想知道的话,网上 ...

  6. POJ3057 Evacuation(二分图最大匹配)

    人作X部:把门按时间拆点,作Y部:如果某人能在某个时间到达某门则连边.就是个二分图最大匹配. 时间可以二分枚举,或者直接从1枚举时间然后加新边在原来的基础上进行增广. 谨记:时间是个不可忽视的维度. ...

  7. ZOJ1654 Place the Robots(二分图最大匹配)

    最大匹配也叫最大边独立集,就是无向图中能取出两两不相邻的边的最大集合. 二分图最大匹配可以用最大流来解. 如果题目没有墙,那就是一道经典的二分图最大匹配问题: 把地图上的行和列分别作为点的X部和Y部, ...

  8. HDU:过山车(二分图最大匹配)

    http://acm.hdu.edu.cn/showproblem.php?pid=2063 题意:有m个男,n个女,和 k 条边,求有多少对男女可以搭配. 思路:裸的二分图最大匹配,匈牙利算法. 枚 ...

  9. UOJ #78 二分图最大匹配

    #78. 二分图最大匹配 从前一个和谐的班级,有 nl 个是男生,有 nr 个是女生.编号分别为 1,…,nl 和 1,…,nr. 有若干个这样的条件:第 v 个男生和第 u 个女生愿意结为配偶. 请 ...

随机推荐

  1. Python实现单神经元分类图片的训练

    1.加载包和数据 numpy is the fundamental package for scientific computing with Python. h5py is a common pac ...

  2. JavaSE_05_反射

    1.什么是反射? Java反射说的是在运行状态中,对于任何一个类,我们都能够知道这个类有哪些方法和属性.对于任何一个对象,我们都能够对它的方法和属性进行调用.我们把这种动态获取对象信息和调用对象方法的 ...

  3. 【DM8168学习笔记3】CodSourcery GCC Tool Chain安装过程记录

    eagle@eagle-desktop:~$ cd/home/eagle/desktop eagle@eagle-desktop:~/desktop$ cd./vboxshared eagle@eag ...

  4. 013- unittest单元测试框架

    unittest单元测试框架 重要的概念 1. TestCase TestCase 是最小的测试单元,用于检查特定输入集合的特定返回值.unittest提供了TestCase基类,我们创建的测试类需要 ...

  5. javascript date utc

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/huangbin10025/article/details/37503465 近期在使用highsto ...

  6. CImage 是基于GDI+的,很老的一篇文章,我很久很久以前看到过的

    在许多资料上都说CImage类是基于GDI+的,但是为什么是基于GDI+的呢? 因为使用这个类时,并没有加入#include <gdiplus.h> ,也没有在程序开始和结束时分别写GDI ...

  7. 移动相关的css

    1.首先认识第一个apple-mobile-web-app-capable 删除默认的苹果工具栏和菜单栏. <meta name="apple-mobile-web-app-capab ...

  8. --1.plsql中学习job

    --1.plsql中学习job --学习job --建表 create table test_job(para_date date); commit; insert into test_job val ...

  9. HDFS写数据的过程

  10. kuangbin带我飞QAQ DLX之一脸懵逼

    1. hust 1017 DLX精确覆盖 模板题 勉强写了注释,但还是一脸懵逼,感觉插入方式明显有问题但又不知道哪里不对而且好像能得出正确结果真是奇了怪了 #include <iostream& ...