洛谷P1880 石子合并 纪中2119. 环状石子归并

洛谷传送门

题目描述1

在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.

输入格式

数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.

输出格式

输出共2行,第1行为最小得分,第2行为最大得分.

输入输出样例

输入 #1复制

4
4 5 9 4
输出 #1复制

43
54

(File IO): input:stone.in output:stone.out

时间限制: 1000 ms  空间限制: 262144 KB  具体限制  

Goto ProblemSet

题目描述2

在一个环状跑道上摆放着N堆石子,现在要将所有的石子有次序地合并成一堆。规定每次只能选取相邻的两堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。问最少的总得分是多少?

输入

第一行为石子堆数N。
从第2行到第N + 1行,每行一个正整数。第i个数表示第i堆石子的石子数。

输出

在第一行输出一个整数,表示最少的总得分。

样例输入

4
4
5
9

样例输出

43 

数据范围限制

在40%的数据中,1 ≤ N ≤ 100
在60%的数据中,1 ≤ N ≤ 200
在100%的数据中,1 ≤ N ≤ 2000
保证输入数据中每堆石子的石子数不超过10000

Solution

此题为区间DP+四边形不等式

这是我第一次见到区间DP

洛谷上既要求最大值,也要求最小值,(多写几句话的事~)但是数据范围最大只有100

jzoj上就恶心了,虽然只要求最小值,但是数据范围最大为2000!

Algorithm1

标准的区间DP

由于这是环形的,所以要把整个跑道复制一遍

可以在输入的同时操作

(约定:s[i]表示第i(0~n-1)堆石子的数量)

for(int i=;i<n;i++) cin>>s[i],s[i+n]=s[i];

做DP前要先弄清楚“阶段”,“状态”,“决策”;

由于首先要合并两堆,再在两堆的基础上合并三堆,再在三堆的基础上合并四堆……以此类推。

并且,每次要选相邻的两堆合并(这就是为什么不能像“合并果子那样使用贪心”)

所以,每一个阶段就是合并去=的区间长度 len

这个len在循环的最外层,从2至n(最少合并2堆)

其次是状态

状态即为最初的第l堆石子和第r堆石子被合并,

同时l~r这段区间的长度为阶段——len。

所以我们要枚举的状态就是左端点

范围:左极限为0,右极限为右端点<n

最内层是决策

顾名思义:

就是决定当前应该选哪两堆来合并

对于目前长度为len的区间[l,r)

可以选出一个中间点k∈[l,r)

表示先合并了[l,k],再合并[k+1,r)

所以决策就是中间点k

同时还要计算合并这两堆石子所需要的体力(即为两堆石子的石子数量之和)

可以使用前缀和计算

Code1

洛谷Code

 #include<iostream>//不想OI一场空,千万别用万能头
#include<algorithm>//快排sort()
#include<cstdio>//能不用cin就不用
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#define IL inline
using namespace std; int s[],n,minn=0x3f3f3f3f,maxn;
int dpmin[][],dpmax[][];
int sum[];
int main()
{
cin>>n;
memset(dpmin,0x3f,sizeof(dpmin));
for(int i=;i<n;i++) cin>>s[i],s[i+n]=s[i];
for(int i=;i<*n;i++)
dpmin[i][i]=;
sum[]=s[];
for(int i=;i<*n;i++) sum[i]=sum[i-]+s[i];
for(int len=;len<=n;len++)
{
for(int l=;l+len-<*n;l++)
{
for(int k=l;k<l+len-;k++)
dpmin[l][l+len-]=min(dpmin[l][l+len-],dpmin[l][k]+dpmin[k+][l+len-]),
dpmax[l][l+len-]=max(dpmax[l][l+len-],dpmax[l][k]+dpmax[k+][l+len-]);
dpmin[l][l+len-]+=sum[l+len-]-sum[l-];
dpmax[l][l+len-]+=sum[l+len-]-sum[l-];
}
}
for(int i=;i<n;i++)
minn=min(minn,dpmin[i][i+n-]),maxn=max(maxn,dpmax[i][i+n-]);
cout<<minn<<endl<<maxn;
return ;
}

纪中Code1(70分)

 #include<iostream>//不想OI一场空,千万别用万能头
#include<algorithm>//快排sort()
#include<cstdio>//能不用cin就不用
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#define IL inline
using namespace std; int s[],n,minn=0x3f3f3f3f;
int f[][];
int sum[];
IL int read()
{
int res=;
char ch=getchar();
while(ch<''||ch>'')
ch=getchar();
while(ch>=''&&ch<='')
res=(res<<)+(res<<)+(ch^),ch=getchar();
return res;
} int main()
{
// freopen("stone.in","r",stdin);
// freopen("stone.out","w",stdout);
n=read();
memset(f,0x3f,sizeof(f));
for(int i=;i<=n;i++) s[i]=read(),s[i+n]=s[i];
for(int i=;i<=*n;i++)
f[i][i]=,sum[i]=sum[i-]+s[i];
for(int len=;len<=n;len++)
{
for(int l=;l+len-<=*n;l++)
{
for(int k=l;k<l+len-;k++)
f[l][l+len-]=min(f[l][l+len-],f[l][k]+f[k+][l+len-]);
f[l][l+len-]+=sum[l+len-]-sum[l-];
}
}
for(int i=;i<=n;i++)
minn=min(minn,f[i][i+n-]);
cout<<minn;
return ;
}

纪中Code1

为什么折叠?

纪中此题的范围是2000,要用到四边形不等式优化成n2才能过……毒瘤呀

Attention1

所有数组都要开两倍大——这是环状变链状。

Algorithm2

四边形不等式

对于一个函数f(i,j),有四个值a<=b<c<=d

使得f(a,b)+f(c,d)<f(a,c)+f(b,d)

那么这个函数满足四边形不等式

可以放到决策k时使用

至于证明嘛……打表证吧

Impression

2019-08-22 11:51:55

与此同时……

哪个人知道我们听不懂今天的讲课会都回来,故意放了比赛???

洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并的更多相关文章

  1. 纪中21日T3 2118. 【2016-12-30普及组模拟】最大公约数

    纪中21日T3 2118. 最大公约数 (File IO): input:gcd.in output:gcd.out 时间限制: 1000 ms  空间限制: 262144 KB  具体限制 Goto ...

  2. 洛谷 P1880 [NOI1995]石子合并 题解

    P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...

  3. [洛谷P1880][NOI1995]石子合并

    区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...

  4. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  5. 洛谷P1880 [NOI1995] 石子合并 [DP,前缀和]

    题目传送门 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆 ...

  6. 洛谷 P1880 [NOI1995]石子合并

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  7. 纪中21日c组模拟赛

    AWSL  AWSL  AWSL  AWSL AWSL  AWSL  AWSL  AWSL AWSL  AWSL  AWSL  AWSL AWSL  AWSL  AWSL  AWSL 题解传送 T1  ...

  8. 洛谷 P1880 [NOI1995]石子合并(区间DP)

    嗯... 题目链接:https://www.luogu.org/problem/P1880 这道题特点在于石子是一个环,所以让a[i+n] = a[i](两倍长度)即可解决环的问题,然后注意求区间最小 ...

  9. 纪中21日c组T1 1575. 二叉树

    1575. 二叉树 (File IO): input:tree.in output:tree.out 时间限制: 1000 ms  空间限制: 262144 KB  具体限制   Goto Probl ...

随机推荐

  1. 面试总结 | Linux后台开发不得不看的知识点(给进军bat的你!)

    目录 一 自我介绍 二 面试情况 三 相关知识点汇总 1 c/c++相关 2 计算机网络 3 数据结构相关 4 数据库相关 5 操作系统 6 Linux基础知识及应用编程(后台必备!) 7 大数问题 ...

  2. 【WPF学习】第三十六章 样式基础

    前面三章介绍了WPF资源系统,使用资源可在一个地方定义对象而在整个标记中重用他们.尽管可使用资源存储各种对象,但使用资源最常见的原因之一是通过他们的保存样式. 样式是可应用于元素的属性值集合.WPF样 ...

  3. 二、UDP

    1 端口号 在计算机网络和电磁信号理论中,对共享同一通信信道的多个信号进行区分是个常见的问题.多路复用(multiplexing)就是允许多个会话共享同一介质或机制的一种解决方案. 使用不同的频率来区 ...

  4. Keepalived & LVS: 实现web的负载均衡和高可用

    目录 1. 环境介绍2. LVS DR模型中Realserver上的准备3. ha上的准备4. 配置keepalived5. 测试Realserver的切换6. failback页面测试7. keep ...

  5. 独立磁盘冗余阵列-RAID

    一.RAID概述 RAID(Redundant Array of Independent Disks)即独立冗余磁盘阵列 磁盘阵列就是.由很多块廉价磁盘 组成的一个容量巨大的卷组.然后在使用不同级别的 ...

  6. Hexo部署到Gitee/Coding常见的错误

    全网最全小白搭建Hexo+Gitee/Coding 全网最全小白搭建Hexo+Gitee/Coding 本站内容已全部转移到https://www.myyuns.ltd,具体请移步到www.myyun ...

  7. Nginx总结(八)Nginx服务器的日志管理及配置

    前面讲了如何配置Nginx虚拟主机,大家可以去这里看看nginx系列文章:https://www.cnblogs.com/zhangweizhong/category/1529997.html 今天要 ...

  8. 小程序websocket心跳库——websocket-heartbeat-miniprogram

    前言 在16年的时候因为项目接触到websocket,而后对心跳重连做了一次总结,写了篇博客,而后18年对之前github上的demo代码进行了再次开发和开源,最终封装成库.如下: 博客:https: ...

  9. VFP9.0的GDI+类的使用

    GDI+你应该不会陌生吧,然而,在VFP里要使用这一技术,可不是一件容易的事,你得学习一大堆API函数.或许,一想到这,你已经望而却步了.不过,从现在起,这一技术不再是豪门旺族的专宠了,我们每一位Fo ...

  10. Kubernetes最新版核心命令

    #查看所有namespace的pods运行情况 kubectl get pods --all-namespaces #查看具体pods,记得后边跟namespace名字哦 kubectl get po ...