SERF(speed up robust feature )特征的关键特性:

  1. 特征检测
  2. 尺度空间:缩放到不同的大小或分辨率仍能检测
  3. 选择不变性:光照不变,旋转不变
  4. 特征向量:描述为一个特征向量

DDN过程为:检测、描述、匹配

  工作原理:

  1. 选择感兴趣的区域POI,用Hessian矩阵找到,然后求取梯度
  2. 在不同尺度空间发现关键点,非最大信号压制,把不是局部的最大信号放弃
  3. 发现特征点,求取在某个方向上的特征最大值就找到了特征方向。旋转不变性
  4. 再根据光照不变性生成特征向量

  Hessian矩阵:$\left[ {\begin{array}{*{20}{c}}
{\frac{{\partial {I^2}}}{{\partial {x^2}}}}&{\frac{{\partial {I^2}}}{{\partial x\partial y}}}\\
{\frac{{\partial {I^2}}}{{\partial y\partial x}}}&{\frac{{\partial {I^2}}}{{\partial {{\rm{y}}^2}}}}
\end{array}} \right]$

  用Hessian矩阵寻找POI最好用整数特征点区域连续的浮点数特征计算

  要近似转换成近似的整数计算如下:

\[\frac{{{\partial ^2}H}}{{\partial {x^2}}} = \left[ {\begin{array}{*{20}{c}}
{{d_{xx}}}&{{d_{yx}}}&{{d_{sx}}}\\
{{d_{xy}}}&{{d_{yy}}}&{{d_{sy}}}\\
{{d_{xs}}}&{{d_{ys}}}&{{d_{ss}}}
\end{array}} \right]\]

$$\frac{{\partial H}}{{\partial x}} = \left[ {\begin{array}{*{20}{c}}
{{d_x}}\\
{{d_y}}\\
{{d_z}}
\end{array}} \right]$$

  尺度空间如下:中间X表示最大尺度空间

  Hessian矩阵在尺度空间寻找关键点:$H(x) = H + \frac{{\partial {H^T}}}{{\partial x}}x + \frac{1}{2}{x^T}\frac{{{\partial ^2}{\rm{H}}}}{{\partial {x^2}}}x$(拉格朗日泰勒级数展开形式) 求取Hessian矩阵为0时候的x值$\hat x = - \frac{{{\partial ^2}{{\rm{H}}^{ - 1}}}}{{\partial {x^2}}}\frac{{\partial H}}{{\partial x}}$就是最大值,然后每次移动0.5,不断向这个最大值逼近,这样就在空间尺度找到最大关键点。

  旋转不变性:

  如图所示,在4$ \times $4的方格中,每隔方格为5$ \times $5的像素,用如图2$ \times $2的Haar在5$ \times $5的像素求取dx,dy,得到每个方向的值,然后所有5$ \times $5内的dx加起来,dy加起来,每个5$ \times $5的区域得到一个向量

\[V = \{ \sum {dx,} \sum {\left| {dx} \right|,} \sum {dy,} \sum {\left| {dy} \right|} \} \]

  在4$ \times $4的方格中总共有16个向量。

  原图如下:

  minHessian = 400的特征点如下:

   minHessian = 100的特征点如下:

  相关函数解释:

static Ptr<SURF> create(double hessianThreshold=,        //hessian关键点检测器的阈值,默认在300-500之间
int nOctaves = , //表示在4个尺度空间
int nOctaveLayers = , //每个尺度空间的层数
bool extended = false, //扩展描述符标志(true使用扩展的128个元素的描述符,false使用64个元素的描述符)
bool upright = false //旋转的特征标志(true不计算方向,false计算方向)
);
/****************************************************************/
detect( InputArray image, //图像
vector<KeyPoint>& keypoints,// 检测到的关键点
InputArray mask=noArray() //指定在哪里寻找关键点的掩码(必须是在感兴趣区域中具有非零值的8位整数矩阵)
);
/****************************************************************/
drawKeypoints(InputArray image, //源图像
              vector<KeyPoint>& keypoints, //来自源图像的关键点
              InputOutputArray outImage,//输出图像
              const Scalar& color=Scalar::all(-), //关键点的颜色
              int flags=DrawMatchesFlags::DEFAULT //设置绘图功能的标志
);

   参考程序如下:

 #include<opencv2/opencv.hpp>
#include<opencv2/xfeatures2d.hpp>
#include<iostream> using namespace std;
using namespace cv;
using namespace cv::xfeatures2d; int main(int argc, char *argv[])
{
Mat src = imread("H:/cv_code/image/home.jpg",);
if(src.empty())
{
printf("no image");
return -;
}
namedWindow("src",CV_WINDOW_AUTOSIZE);
imshow("src", src);
//Hessian矩阵
int minHessian = ;
Ptr <SURF> detector = SURF::create(minHessian);
vector <KeyPoint> keyPoints;
detector->detect(src,keyPoints,Mat());
//绘制关键点
Mat keyPoint_result;
drawKeypoints(src, keyPoints, keyPoint_result, Scalar::all(-), DrawMatchesFlags::DEFAULT);
namedWindow("src",CV_WINDOW_AUTOSIZE);
imshow("keyPoint_result", keyPoint_result); waitKey();
return ;
}

SURF特征检测的更多相关文章

  1. 第二节,surf特征检测关键点,实现图片拼接

    初级的图像拼接为将两幅图像简单的粘贴在一起,仅仅是图像几何空间的转移和合成,与图像内容无关:高级图像拼接也叫做基于特征匹配的图像拼接,拼接时消去两幅图像相同的部分,实现拼接全景图. 实现步骤: 1.采 ...

  2. OpenCV——SURF特征检测、匹配与对象查找

    SURF原理详解:https://wenku.baidu.com/view/2f1e4d8ef705cc1754270945.html SURF算法工作原理 选择图像中的POI(Points of i ...

  3. OpenCV探索之路(二十三):特征检测和特征匹配方法汇总

    一幅图像中总存在着其独特的像素点,这些点我们可以认为就是这幅图像的特征,成为特征点.计算机视觉领域中的很重要的图像特征匹配就是一特征点为基础而进行的,所以,如何定义和找出一幅图像中的特征点就非常重要. ...

  4. opencv学习之路(35)、SURF特征点提取与匹配(三)

    一.简介 二.opencv中的SURF算法接口 三.特征点匹配方法 四.代码 1.特征点提取 #include "opencv2/opencv.hpp" #include < ...

  5. 第十三节、SURF特征提取算法

    上一节我们已经介绍了SIFT算法,SIFT算法对旋转.尺度缩放.亮度变化等保持不变性,对视角变换.仿射变化.噪声也保持一定程度的稳定性,是一种非常优秀的局部特征描述算法.但是其实时性相对不高. SUR ...

  6. 《opencv学习》 之 特征检测与匹配

    这几天学习SURF特征检测,直接看的视频和书本有点吃不消,现在是基本看懂了,如果写博客记录没有必要,因为网上都差不多,笔记都在书上了,以下是个人认为比较浅显易懂的文章,当然海有很多好文章我没看到. 看 ...

  7. opencv::SURF特征

    SURF特征基本介绍 SURF(Speeded Up Robust Features)特征关键特性: -特征检测 -尺度空间 -选择不变性 -特征向量 工作原理 . 选择图像中POI(Points o ...

  8. SURF算法源代码OPENSURF分析

    SURF算法源代码分析 平台:win x64 + VS2015专业版 +opencv2.4.11 配置类似参考OPENSIFT,参考我的另一篇博客:https://www.cnblogs.com/Al ...

  9. OpenCV 学习笔记 06 图像检索以及基于图像描述符的搜索

    OpenCV 可以检测图像的主要特征,然后提取这些特征,使其成为图像描述符,这些图像特征可作为图像搜索的数据库:此外可以利用关键点将图像拼接 stitch 起来,组成一个更大的图像.如将各照片组成一个 ...

随机推荐

  1. Codeforces_734_D

    http://codeforces.com/problemset/problem/734/D 保存最近的八个方向的点,判断即可. #include<iostream> #include&l ...

  2. HDU_5094_dfs

    http://acm.hdu.edu.cn/showproblem.php?pid=5094 bfs,vis[x][y][z],z表示钥匙的状态,用二进制来表示,key[x][y]储存当前位置钥匙的二 ...

  3. Codeforces_478_C

    http://codeforces.com/problemset/problem/478/C 水. #include<stdio.h> int main() { long long a,b ...

  4. lwip netbuf

    lwip2.0.2 netbuf_new——分配netbuf结构体的内存. netbuf_alloc,分配netbuf中pbuf内存(pbuf_alloc中PBUF_RAM类型,包括pbuf结构体和p ...

  5. mongo操作备忘

    #查看collection内 某个字段条目数 db.dictionary_system.find({"name":"xxx"}).count() #清空某个co ...

  6. 制作openstack的windows server 2012r2镜像

    1. 基础环境安装 yum groupinstall Virtualization "Virtualization Client" yum install libvirt 2. 启 ...

  7. 4.【Spring Cloud Alibaba】服务容错-sentinel

    雪崩效应 常见容错方案 超时 限流 仓壁模式 断路器模式 断路器三态转换 使用Sentinel实现容错 什么是Sentinel https://github.com/alibaba/Sentinel ...

  8. GNU make doc - 6.6 追加变量值

    有时我们需要对已经定义过的变量进行追加,可以使用+=进行这一操作,就像下面这样 objects += another.o 该语句取objects变量的值,并在其后追加another.o(结果会在原变量 ...

  9. 为什么我不建议在C#中用下划线_开头来表示私有字段

    我在C#官方文档的使用属性里看到这种代码: public class Date { private int _month = 7; // Backing store public int Month ...

  10. Kakfa集群(2.11-0.10.1.0)版本滚动升级方案

    Kafka集群版本升级(2.11-0.10.1.0)升级(2.11-0.10.2.2) 官网升级说明: 一.系统环境Zookeeper集群:172.16.2.10172.16.2.11172.16.2 ...