题意

PDF

分析

用n颗宝石串成项链和手镯, 每颗宝石的颜色可以t种颜色中的一种,当A类项链经过旋转得B类项链时,A和B属于一类项链, 而手镯不仅可以旋转还可以翻转,当A类手镯经过翻转得得到B类手镯时A和B属于一类手镯,问这n颗宝石,t种颜色,可以串成多少种项链和手镯?

解法:

首先将n颗宝石按顺时针方向编号1,2,3,4,5,6......n

  1. 旋转,当顺时针旋转i颗宝石时, 可以得到一个置换,且这个置换的个数为 (n*i)/gcd(n,i)/i ;由对称性可知 每个循环的阶均相同,故共有gcd(n,i)个不相交循环。此时置换的不动点为 C(f)=t^(gcd(n,i))
  2. 翻转,当n为奇数时,共有(n-1)/2个对称轴,每个对称轴对应一个置换,每个置换包含(n-1)/2个阶为2的循环,一个阶为一的循环,此时C(f)=t^( (n+1)/2 ); 当n为偶数时,不过点的对称轴为n/2个,过点的对称轴有n/2-1, 对于每个不过点的对称轴形成一个置换,包含n/2个阶为2的循环,此时C(f)=t^(n/2); 对于过点的每条对称轴形成一个置换,每个置换包含(n-2)/2个阶为2的循环,两个阶为1的循环,C(f)=t^(n/2+1);
  3. 根据ploy定理,等价类的个数为所有置换不动点的平均值。

时间复杂度\(O(n \log n)\)

代码

#include<iostream>
#include<algorithm>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll; co int maxn=51;
int n,t;
ll pow[maxn],a,b;
int main(){
// freopen(".in","r",stdin),freopen(".out","w",stdout);
while(~scanf("%d%d",&n,&t)){
pow[0]=1;
for(int i=1;i<=n;++i) pow[i]=pow[i-1]*t;
a=0;
for(int i=0;i<n;++i) a+=pow[std::__gcd(i,n)];
b=0;
if(n&1) b=n*pow[(n+1)/2];
else b=n/2*(pow[n/2+1]+pow[n/2]);
printf("%lld %lld\n",a/n,(a+b)/2/n);
}
return 0;
}

UVA10294 Arif in Dhaka (First Love Part 2)的更多相关文章

  1. [Uva10294]Arif in Dhaka

    [Uva10294]Arif in Dhaka 标签: 置换 Burnside引理 题目链接 题意 有很多个珠子穿成环形首饰,手镯可以翻转和旋转,项链只能旋转.(翻转过的手镯相同,而项链不同) 有n个 ...

  2. UVA10294 Arif in Dhaka (First Love Part 2) —— 置换、poyla定理

    题目链接:https://vjudge.net/problem/UVA-10294 题解: 白书P146~147. 为什么旋转i个间距,就有gcd(i,n)个循环,且每个循环有n/gcd(i,n)个元 ...

  3. UVA10294 Arif in Dhaka (群论,Polya定理)

    UVA10294 Arif in Dhaka (群论,Polya定理) 题意 : 给你一个长为\(n\)的项链和手镯,每个珠子有\(m\)种颜色. 两个手镯定义为相同,即它们通过翻转和旋转得到一样的手 ...

  4. Uva10294 Arif in Dhaka (置换问题)

    扯回正题,此题需要知道的是置换群的概念,这点在刘汝佳的书中写的比较详细,此处不多做赘述.此处多说一句的是第二种手镯的情况.在下图中“左图顺时针转1个位置”和“右图顺时针旋转5个位置”是相同的,所以在最 ...

  5. 【uva 10294】 Arif in Dhaka (First Love Part 2) (置换,burnside引理|polya定理)

    题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. ...

  6. UVa 10294 (Pólya计数) Arif in Dhaka (First Love Part 2)

    Burnside定理:若一个着色方案s经过置换f后不变,称s为f的不动点,将置换f的不动点的数目记作C(f).等价类的数目等于所有C(f)的平均值. 一个项链,一个手镯,区别在于一个能翻转一个不能,用 ...

  7. Uva 10294 Arif in Dhaka (First Love Part 2)

    Description 现有一颗含\(N\)个珠子的项链,每个珠子有\(t\)种不同的染色.现求在旋转置换下有多少种本质不同的项链,在旋转和翻转置换下有多少种本质不同的项链.\(N < 51,t ...

  8. UVa 10294 Arif in Dhaka (First Love Part 2)(置换)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35397 [思路] Polya定理. 旋转:循环节为gcd(i,n) ...

  9. Arif in Dhaka (First Love Part 2) UVA - 10294(Polya定理)

    这题和POJ-1286一样 题意: 给出t种颜色的n颗珠子 (每种颜色的珠子个数无限制,但总数必须是n), 求能制作出项链和手镯的个数 注意手镯可以翻转和旋转  而 项练只能旋转 解析: 注意Poly ...

随机推荐

  1. Java线程的三种方式

    创建线程有三种方式: 1.继承Thread类 2.实现Runnable接口 3.使用Callable和Future创建线程 三种方式详解如下: ---------------------------- ...

  2. 对FPGA的时钟资源理解(更新中)

    7系列FPGA中包含了多达24个CMT(时钟管理单元)(实际上V7常见只有20个),MMCM和PLL均为时钟综合器,对外部输入时钟.内部时钟进行处理,生成需要的低抖动时钟.PLL是MMCM的功能子集, ...

  3. DevExpress ASP.NET v18.2新功能详解(二)

    行业领先的.NET界面控件2018年第二次重大更新——DevExpress v18.2日前正式发布,本站将以连载的形式为大家介绍新版本新功能.本文将介绍了DevExpress ASP.NET Cont ...

  4. <Maven><Dependency><Conflict><Could not resolve>

    maven conflict solution: scenerio: Runtime Error: ``` java.lang.SecurityException: class "javax ...

  5. <spark入门><Intellj环境配置><scala>rk入门><Intellj环境配置><scala>

    # 写在前面: 准备开始学spark,于是准备在IDE配一个spark的开发环境. 嫌这篇格式不好的看这里链接 用markdown写的,懒得调格式了,么么哒 # 相关配置: ## 关于系统 * mac ...

  6. python学习 day01 基础介绍

    一.编程的目的 1.什么是语言?编程语言又为何? 语言是一种事物与另外一种事物沟通的介质.编程语言是程序员和计算机沟通的介质. 2.什么是编程? 程序员把自己想要计算机做的事用编程语言表达出来,编程的 ...

  7. leetcode56:合并区间

    给出一个区间的集合,请合并所有重叠的区间.(解题思想来源于:https://blog.csdn.net/qq_34364995/article/details/80788049 ) 示例 1: 输入: ...

  8. 解决Could not open Hibernate Session for transaction; nested exception is java.lang.NoClassDefFoundError: org/hibernate/engine/transaction/spi/TransactionContext

    我使用的是5.2.8的hibernate的jar包,运行的时候却报错Could not open Hibernate Session for transaction; nested exception ...

  9. Cleartext HTTP traffic to ... not permitted

    Android下APP出现java.io.IOException: Cleartext HTTP traffic to dict.youdao.com not permitted,百度查了一下是And ...

  10. ie 折腾计(浏览器兼容性)

    常见问题 IE:6.0,IE7.0,IE8.0之间的兼容独立说明 /*用于展示标签*/ <div class="jrx"></div> <style ...