LG3978 【[TJOI2015]概率论】
生成函数做法
前置:卡特兰数
记\(C_n\)为\(n\)个节点的二叉树的个数,\(C_0=1\),对于\(n \geq 1\),取一个根节点,枚举其左子树大小,有
\]
则卡特兰数的生成函数\(C\)满足
\]
解方程得
\]
上面为什么不取正呢?考虑x=0,取负上下为等阶无穷小,值为1;取正上面是2下面是0,无意义。所以只能取负。
\]
\]
\]
分析
记\(h_n\)表示这\(C_n\)个二叉树的叶子数目之和,有\(h_0=0,h_1=1\)
对于\(n\geq 2\),枚举根的左儿子大小并由对称性,有
\]
\]
\]
根据\(C(x)=\frac{1-\sqrt{1-4x}}{2x}\),解得
\]
\]
\]
\]
那么期望值为
\]
组合做法
对于一个叶子,可以用一个pair来描述:去掉该叶子后的二叉树,在该二叉树的哪个位置添加该叶子。
每个pair也对应了唯一的叶子。所以考虑计数这个pair
去掉该叶子的二叉树有N − 1个点,数目为CatalanN−1
对于一个N − 1个点的二叉树,考虑有多少个空位可以放。总共有2 × (N − 1)个空位,但是有N − 2个点已经占据了一个空位,所以有N个空位可以添加叶子
两个方案数相乘,再除以CatalanN,化简一下发现答案是 \(\frac{n(n+1)}{4n-2}\)。
LG3978 【[TJOI2015]概率论】的更多相关文章
- 4001: [TJOI2015]概率论
4001: [TJOI2015]概率论 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 262 Solved: 108[Submit][Status] ...
- 【BZOJ4001】[TJOI2015]概率论(生成函数)
[BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...
- [TJOI2015]概率论
[TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...
- bzoj4001: [TJOI2015]概率论
题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...
- P3978 [TJOI2015]概率论
\(\color{#0066ff}{ 题目描述 }\) 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的 ...
- 【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论
题目描述: Description: Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Ou ...
- 【BZOJ】4001: [TJOI2015]概率论
题意 求节点数为\(n\)的有根树期望的叶子结点数.(\(n \le 10^9\)) 分析 神题就打表找规律.. 题解 方案数就是卡特兰数,$h_0=1, h_n = \sum_{i=0}^{n-1} ...
- luogu3978 [TJOI2015]概率论
题目链接:洛谷 题目大意:求所有$n$个点的有根二叉树的叶子节点数总和/$n$个点的有根二叉树的个数. 数据范围:$n\leq 10^9$ 生成函数神题!!!!(我只是来水博客的) 首先$n$个点的有 ...
- BZOJ4001[TJOI2015]概率论——卡特兰数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...
随机推荐
- day24-python操作数据库四
#!/usr/bin/env python # -*- coding:utf-8 -*- # @time: 2017/11/23 23:10 # Author: caicai # @File: dem ...
- zookeeper集群环境搭建(纯zookeeper)
1.首先在三台机子上放上zookeeper的解压包,解压. 然后的话zookeeper是依赖于jdk的,那么也应该安装jdk,这里不详细说明了. mv zookeeper-3.4.5 zookeepe ...
- 异常处理机制中的return关键字
Java中,执行try-catch-finally语句需要注意: 第一:return语句并不是函数的最终出口,如果有finally语句,这在return之后还会执行finally(return的值会暂 ...
- Python select 详解(转)
I/O多路复用是在单线程模式下实现多线程的效果,实现一个多I/O并发的效果.看一个简单socket例子: import socket SOCKET_FAMILY = socket.AF_INET SO ...
- 用mysql存储过程代替递归查询
查询此表某个id=4028ab535e370cd7015e37835f52014b(公司1)下的所有数据 正常情况下,我们采用递归算法查询,如下 public void findCorpcompany ...
- SharePoint Framework 企业向导(一)
博客地址:http://blog.csdn.net/FoxDave 简介 SharePoint Framework(SPFx)是一个新的SharePoint用户接口扩展的开发模型,它用来补充现有的 ...
- tf 模型保存
tf用 tf.train.Saver类来实现神经网络模型的保存和读取.无论保存还是读取,都首先要创建saver对象. 用saver对象的save方法保存模型 保存的是所有变量 save( sess, ...
- CodeForces - 429A Xor-tree
Iahub is very proud of his recent discovery, propagating trees. Right now, he invented a new tree, c ...
- intellij构建多模块项目
1.新建sailfish总目录, 2.新建maven项目,并将其手动移入sailfish,再用intellij打开该项目, <groupId>com.rainbow.sailfish< ...
- JavaWeb基础知识总结
JavaWeb基础知识总结. 1.web服务器与HTTP协议 Web服务器 l WEB,在英语中web即表示网页的意思,它用于表示Internet主机上供外界访问的资源. l Internet上供 ...