poj3613 Cow Relays【好题】【最短路】【快速幂】
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions:9207 | Accepted: 3604 |
Description
For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.
Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.
To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.
Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.
Input
* Line 1: Four space-separated integers: N, T, S, and E
* Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i
Output
* Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.
Sample Input
2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9
Sample Output
10
Source
题意:
在一个图上求从$S$到$E$的,刚好经过$n$条边的最短路径长。
思路:
没想到最短路的题目还可以用快速幂。也没想到快速幂还可以这么写。
这道题边最多是100条,所以可以先把点离散化。离散化后点的编号最大是$node_cnt$
最初的矩阵$G[i,j]$中存储的其实是从$i$经过一条边到达$j$的最短路
那么$G^{(2)}[i, j] = \min_{1\leq k\leq node_cnt}{G[i, k] + G[k, j]}$就可以表示从$i$经过两条边到达$j$的最短路
如果矩阵$G^{(m)}$表示任意两点之间恰好经过$m$条边的最短路,那么
$G^{(r+m)}[i, j] = \min_{1\leq k\leq node_cnt}{G^{(r)}[i, k] + G^{(m)}[k, j]}$
这就可以使用快速幂进行递推了。只需要把$matrix$的乘法操作中,$+=$变成$\min$, $*$变成$+$
注意矩阵要初始化为$+\infty$
#include<iostream>
//#include<bits/stdc++.h>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<set>
#include<climits>
#include<map>
using namespace std;
typedef long long LL;
#define N 100010
#define pi 3.1415926535
#define inf 0x3f3f3f3f int n, t, S, E;
const int maxn = ;
int node_cnt;
struct matrix{
int m[maxn][maxn];
//int m_size;
matrix operator *(const matrix &b)const{
matrix ret;
memset(ret.m, 0x3f, sizeof(ret.m));
for(int i = ; i <= node_cnt; i++){
for(int j = ; j <= node_cnt; j++){
//ret.m[i][j] = inf;
for(int k = ; k <= node_cnt; k++){
ret.m[i][j] = min(m[i][k] + b.m[k][j], ret.m[i][j]);
}
}
}
return ret;
}
}g;
//int g[maxn][maxn];
struct edge{
int u, v, length;
}e[];
set<int>nodes;
set<int>::iterator set_it;
map<int, int>node_mp; matrix ksm(matrix a, int x)
{
matrix ret, k;
k = a;
ret = a;
x--;
while(x){
if(x & ){
ret = ret * k;
}
x >>= ;
k = k * k;
}
return ret;
} int main()
{
while(scanf("%d%d%d%d", &n, &t, &S, &E) != EOF){
for(int i = ; i < t; i++){
scanf("%d%d%d", &e[i].length, &e[i].u, &e[i].v);
nodes.insert(e[i].u);
nodes.insert(e[i].v);
} node_cnt = ;
for(set_it = nodes.begin(); set_it != nodes.end(); set_it++){
node_mp[*set_it] = ++node_cnt;
}
//g.m_size = node_cnt;
memset(g.m, 0x3f, sizeof(g.m));
for(int i = ; i < t; i++){
int u = e[i].u, v = e[i].v;
g.m[node_mp[u]][node_mp[v]] = e[i].length;
g.m[node_mp[v]][node_mp[u]] = e[i].length;
}
/*for(int i = 1; i <= node_cnt; i++){
for(int j = 1; j <= node_cnt; j++){
cout<<g.m[i][j]<<" ";
}
cout<<endl;
}*/ matrix ans = ksm(g, n);
//cout<<node_mp[S]<<" "<<node_mp[E]<<endl;
printf("%d\n", ans.m[node_mp[S]][node_mp[E]]);
}
return ;
}
poj3613 Cow Relays【好题】【最短路】【快速幂】的更多相关文章
- Cow Relays POJ - 3613 (floyd+快速幂)
For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race usin ...
- POJ3613 Cow Relays(矩阵快速幂)
题目大概要求从起点到终点恰好经过k条边的最短路. 离散数学告诉我们邻接矩阵的k次幂就能得出恰好经过k条路的信息,比如POJ2778. 这题也一样,矩阵的幂运算定义成min,而min满足结合律,所以可以 ...
- [POJ3613] Cow Relays(Floyd+矩阵快速幂)
解题报告 感觉这道题gyz大佬以前好像讲过一道差不多的?然鹅我这个蒟蒻发现矩阵快速幂已经全被我还给老师了...又恶补了一遍,真是恶臭啊. 题意 给定一个T(2 <= T <= 100)条边 ...
- POJ3613 Cow Relays [矩阵乘法 floyd类似]
Cow Relays Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7335 Accepted: 2878 Descri ...
- 疯子的算法总结(九) 图论中的矩阵应用 Part 1+POJ3613 Cow Relays
图的存储有邻接矩阵,那么他就具备一些矩阵的性质,设有一个图的demo[100][100];那么demo[M][N]就是M—>N的距离,若经过一次松弛操作demo[M][N]=demo[M][K] ...
- 【POJ3613 Cow Relays】(广义矩阵乘法)
题目链接 先离散化,假设有\(P\)个点 定义矩阵\(A_{ij}\)表示\(i\)到\(j\)只经过一条边的最短路,\[{(A^{a+b})_{ij}=\min_{1\le k\le p} \{ ( ...
- [POJ3613] Cow Relays
link 题目大意 给你一个含有边权的无向图,问从$S$到$T$经过$N$条边的最小花费. 试题分析 我们可以很容易推导$dp$方程,$dp(k,i,j)$表示经过$k$条边从$i$到$j$的最小花费 ...
- (中等) CF 576D Flights for Regular Customers (#319 Div1 D题),矩阵快速幂。
In the country there are exactly n cities numbered with positive integers from 1 to n. In each city ...
- E题:Water Problem(快速幂模板)
题目大意:原题链接 题解链接 解题思路:令x=x-1代入原等式得到新的等式,两式相加,将sin()部分抵消掉,得到只含有f(x)的状态转移方程f(x+1)=f(x)+f(x-2)+f(x-3),然后 ...
随机推荐
- 每天一个linux命令(2):cd命令
1.作用 cd(Change Directory 改变目录)命令用来切换工作目录至dirname. 其中dirName表示法可为绝对路径或相对路径.若目录名称省略,则变换至使用者的home direc ...
- 如何寻找linux下相关软件
当在linux下运行程序遇到找不到库的时候可以使用yum whatprovides 来找到到需要安装的包. 例如:yum whatprovides libz.so.1 然后安装找到的包 yum in ...
- awk学习[参考转载]
一.基本示例 1.last -n 5 | awk '{print $1}' $0代表全部 2.last -n 5 | awk -F: '{print $1}' -F代表设置分割符, :代表 ...
- 【Windows】cmd条件判断
1.判断驱动器.文件或文件夹是否存在,用 if exist 语句: 2.判断某两个字符串是否相等,用 if "字符串1"=="字符串2" 语句: 3.判断某两个 ...
- PEM文件
原文链接: http://blog.sina.com.cn/s/blog_489f88710100a59w.html OpenSSL 使用 PEM 文件格式存储证书和密钥.PEM 实质上是 Base6 ...
- 第三部分:Android 应用程序接口指南---第二节:UI---第九章 搜索
第9章 搜索 在android平台上搜索是一个核心的用户功能.无论内容位于设备或网络上,用户应该能够搜索任何对它们可用的数据.为了创建一个一致的用户搜索体验,Android平台提供了一个搜索框架帮助你 ...
- 视频压缩和H264
一.视频压缩 1.1 为什么需要压缩视频? 假设一个2小时未压缩的高清视频,1920×1080p的电影,我们来计算一下他的存储容量.先介绍一下帧率(frame rate或者是 FPS)概念,也就是每秒 ...
- 如何生成ExecutionGraph及物理执行图
http://chenyuzhao.me/2017/02/06/flink%E7%89%A9%E7%90%86%E8%AE%A1%E5%88%92%E7%94%9F%E6%88%90/ https:/ ...
- 【九天教您南方cass 9.1】 11 方格网土方计算
同学们大家好,欢迎收看由老王测量上班记出品的cass9.1视频课程 我是本节课主讲老师九天. 我们讲课的教程附件也是共享的,请注意索取测量空间中. [点击索取cass教程]5元立得 (给客服说暗号:“ ...
- Excel中substitute替换函数的使用方法
问题现象:在Excel中,对几千条数据按照时间顺序排序,但总是有部分数据不参与排序,单纯用单元格调整不起任何作用. 解决办法: 数据排列问题最重要的是数据格式的一致性.解决这个问题,建议按如下步骤: ...