WordNet是面向语义的英语词典,与传统辞典类似,但结构更丰富。nltk中包括英语WordNet,共有155287个单词和117659个同义词。

1.寻找同义词

这里以motorcar为例,寻找它的同义词集。

 >>> from nltk.corpus import wordnet as wn
>>> wn.synsets('motorcar') //找到同义词集
[Synset('car.n.01')]
>>> wn.synset('car.n.01').lemma_names
<bound method Synset.lemma_names of Synset('car.n.01')>
>>> wn.synset('car.n.01').lemma_names() //访问同义词集
['car', 'auto', 'automobile', 'machine', 'motorcar']
>>>
 >>> wn.synset('car.n.01').definition()              //获取该词在该词集的定义
'a motor vehicle with four wheels; usually propelled by an internal combustion engine'
>>> wn.synset('car.n.01').examples() //获取该词在该词集下的例句
['he needs a car to get to work']
>>> wn.synset('car.n.01').lemmas()
[Lemma('car.n.01.car'), Lemma('car.n.01.auto'), Lemma('car.n.01.automobile'), Lemma('car.n.01.machine'), Lemma('car.n.01.motorcar')]
>>> wn.lemma('car.n.01.automobile')
Lemma('car.n.01.automobile')
>>> wn.lemma('car.n.01.automobile').synset()
Synset('car.n.01')
>>> wn.lemma('car.n.01.automobile').name()
'automobile'
>>> wn.synsets('car')
[Synset('car.n.01'), Synset('car.n.02'), Synset('car.n.03'), Synset('car.n.04'), Synset('cable_car.n.01')]
>>> for synset in wn.synsets('car'):
... print (synset.lemma_names())
...
['car', 'auto', 'automobile', 'machine', 'motorcar']
['car', 'railcar', 'railway_car', 'railroad_car']
['car', 'gondola']
['car', 'elevator_car']
['cable_car', 'car']
>>> wn.lemmas('car') //访问所有包含词car的词条
[Lemma('car.n.01.car'), Lemma('car.n.02.car'), Lemma('car.n.03.car'), Lemma('car.n.04.car'), Lemma('cable_car.n.01.car')]
>>>

2.WordNet的层次结构

WordNet的同义词集相当于抽象的概念,它们并不总是有对应的英语词汇。这些概念在层次结构中相互联系在一起。

如上图,是WordNet概念的层次片段。每个节点对应一个同义词集,边表示上位词/下位词关系,即上级概念与从属概念的关系。

 >>> motorcar=wn.synset('car.n.01')
>>> types_of_motorcar=motorcar.hyponyms()
>>> types_of_motorcar[26]
Synset('stanley_steamer.n.01')
>>> sorted(
... [lemma.name()
... for synset in types_of_motorcar
... for lemma in synset.lemmas()])
['Model_T', 'S.U.V.', 'SUV', 'Stanley_Steamer', 'ambulance', 'beach_waggon', 'beach_wagon', 'bus', 'cab', 'compact', 'compact_car', 'convert
ible', 'coupe', 'cruiser', 'electric', 'electric_automobile', 'electric_car', 'estate_car', 'gas_guzzler', 'hack', 'hardtop', 'hatchback', '
heap', 'horseless_carriage', 'hot-rod', 'hot_rod', 'jalopy', 'jeep', 'landrover', 'limo', 'limousine', 'loaner', 'minicar', 'minivan', 'pace
_car', 'patrol_car', 'phaeton', 'police_car', 'police_cruiser', 'prowl_car', 'race_car', 'racer', 'racing_car', 'roadster', 'runabout', 'sal
oon', 'secondhand_car', 'sedan', 'sport_car', 'sport_utility', 'sport_utility_vehicle', 'sports_car', 'squad_car', 'station_waggon', 'statio
n_wagon', 'stock_car', 'subcompact', 'subcompact_car', 'taxi', 'taxicab', 'tourer', 'touring_car', 'two-seater', 'used-car', 'waggon', 'wago
n']
>>> motorcar.hypernyms()
[Synset('motor_vehicle.n.01')]
>>> paths=motorcar.hypernym_paths()
>>> len(paths)
2
>>> [synset.name for synset in paths[0]]
[<bound method Synset.name of Synset('entity.n.01')>, <bound method Synset.name of Synset('physical_entity.n.01')>, <bound method Synset.nam
e of Synset('object.n.01')>, <bound method Synset.name of Synset('whole.n.02')>, <bound method Synset.name of Synset('artifact.n.01')>, <bou
nd method Synset.name of Synset('instrumentality.n.03')>, <bound method Synset.name of Synset('container.n.01')>, <bound method Synset.name
of Synset('wheeled_vehicle.n.01')>, <bound method Synset.name of Synset('self-propelled_vehicle.n.01')>, <bound method Synset.name of Synset
('motor_vehicle.n.01')>, <bound method Synset.name of Synset('car.n.01')>]
>>> [synset.name() for synset in paths[0]]
['entity.n.01', 'physical_entity.n.01', 'object.n.01', 'whole.n.02', 'artifact.n.01', 'instrumentality.n.03', 'container.n.01', 'wheeled_veh
icle.n.01', 'self-propelled_vehicle.n.01', 'motor_vehicle.n.01', 'car.n.01']
>>> [synset.name() for synset in paths[1]]
['entity.n.01', 'physical_entity.n.01', 'object.n.01', 'whole.n.02', 'artifact.n.01', 'instrumentality.n.03', 'conveyance.n.03', 'vehicle.n.
01', 'wheeled_vehicle.n.01', 'self-propelled_vehicle.n.01', 'motor_vehicle.n.01', 'car.n.01']
>>> motorcar.root_hypernyms()
[Synset('entity.n.01')]
>>>

3.更多的词汇关系

上位词和下位词被称为词汇关系,因为它们是同义集之间的关系。这两者的关系为上下定位“is-a”层次。WordNet网络另一个重要的定位方式是从条目到它们的部件(部分)或到包含它们的东西(整体)。

1)部分-整体关系

 >>> wn.synset('tree.n.01').part_meronyms()
[Synset('burl.n.02'), Synset('crown.n.07'), Synset('limb.n.02'), Synset('stump.n.01'), Synset('trunk.n.01')]
>>> wn.synset('tree.n.01').substance_meronyms()
[Synset('heartwood.n.01'), Synset('sapwood.n.01')]
>>> wn.synset('tree.n.01').member_holonyms()
[Synset('forest.n.01')]
>>> for synset in wn.synsets('mint', wn.NOUN):
... print("%s : %s" % (synset.name(), synset.definition())
...
...
... )
...
batch.n.02 : (often followed by `of') a large number or amount or extent
mint.n.02 : any north temperate plant of the genus Mentha with aromatic leaves and small mauve flowers
mint.n.03 : any member of the mint family of plants
mint.n.04 : the leaves of a mint plant used fresh or candied
mint.n.05 : a candy that is flavored with a mint oil
mint.n.06 : a plant where money is coined by authority of the government
>>> wn.synset('mint.n.04').part_holonyms()
[Synset('mint.n.02')]
>>> wn.synset('mint.n.04').substance_holonyms()
[Synset('mint.n.05')]

2)蕴涵关系

 >>> wn.synset('walk.v.01').entailments()
[Synset('step.v.01')]
>>> wn.synset('eat.v.01').entailments()
[Synset('chew.v.01'), Synset('swallow.v.01')]
>>> wn.synset('tease.v.03').entailments()
[Synset('arouse.v.07'), Synset('disappoint.v.01')]

3)反义词

 >>> wn.lemma('supply.n.02.supply').antonyms()
[Lemma('demand.n.02.demand')]
>>> wn.lemma('rush.v.01.rush').antonyms()
[Lemma('linger.v.04.linger')]
>>> wn.lemma('horizontal.a.01.horizontal').antonyms()
[Lemma('inclined.a.02.inclined'), Lemma('vertical.a.01.vertical')]
>>> wn.lemma('staccato.r.01.staccato').antonyms()
[Lemma('legato.r.01.legato')]
>>>

4. 语义相似度

同义词集是由复杂的词汇关系网络所连接起来的。给定一个同义词集,可以遍历WordNet网络来查找相关含义的同义词集。每个同义词集都有一个或多个上位词路径连接到一个根上位词。连接到同一个根的两个同义词集可能有一些共同的上位词。如果两个同义词集共用一个特定的上位词——在上位词层次结构中处于较底层——它们一定有密切的联系。

python 自然语言处理(五)____WordNet的更多相关文章

  1. 转-Python自然语言处理入门

      Python自然语言处理入门 原文链接:http://python.jobbole.com/85094/ 分享到:20 本文由 伯乐在线 - Ree Ray 翻译,renlytime 校稿.未经许 ...

  2. Python自然语言处理工具小结

    Python自然语言处理工具小结 作者:白宁超 2016年11月21日21:45:26 目录 [Python NLP]干货!详述Python NLTK下如何使用stanford NLP工具包(1) [ ...

  3. 《Python自然语言处理》中文版-纠错【更新中。。。】

    最近在看<Python自然语言处理>中文版这本书,可能由于是从py2.x到py3.x,加上nltk的更新的原因,或者作者的一些笔误,在书中很多代码都运行不能通过,下面我就整理一下一点有问题 ...

  4. 初学 Python(十五)——装饰器

    初学 Python(十五)--装饰器 初学 Python,主要整理一些学习到的知识点,这次是生成器. #-*- coding:utf-8 -*- import functools def curren ...

  5. Python第十五天 datetime模块 time模块 thread模块 threading模块 Queue队列模块 multiprocessing模块 paramiko模块 fabric模块

    Python第十五天  datetime模块 time模块   thread模块  threading模块  Queue队列模块  multiprocessing模块  paramiko模块  fab ...

  6. python学习第五次笔记

    python学习第五次笔记 列表的缺点 1.列表可以存储大量的数据类型,但是如果数据量大的话,他的查询速度比较慢. 2.列表只能按照顺序存储,数据与数据之间关联性不强 数据类型划分 数据类型:可变数据 ...

  7. Python学习第五堂课

    Python学习第五堂课推荐电影:华尔街之狼 被拯救的姜哥 阿甘正传 辛德勒的名单 肖申克的救赎 上帝之城 焦土之城 绝美之城 #上节内容: 变量 if else 注释 # ""& ...

  8. Python 自然语言处理笔记(一)

    一. NLTK的几个常用函数 1. Concordance 实例如下: >>> text1.concordance("monstrous") Displaying ...

  9. 《Python自然语言处理》

    <Python自然语言处理> 基本信息 作者: (美)Steven Bird    Ewan Klein    Edward Loper 出版社:人民邮电出版社 ISBN:97871153 ...

  10. NLP1 —— Python自然语言处理环境搭建

    最近开始研究自然语言处理了,所以准备好好学习一下,就跟着<Python自然语言处理>这本书,边学边整理吧 安装 Mac里面自带了python2.7,所以直接安装nltk就可以了. 默认执行 ...

随机推荐

  1. ORA-00604的解决方法

    分类: Oracle 从错误的角度可以推出:应该是表空间不足   根据查看表空间的使用情况: select b.file_name 物理文件名, b.tablespace_name 表空间, b.by ...

  2. C#连接数据库open函数失败

    错误信息:在与 SQL Server 建立连接时出现与网络相关的或特定于实例的错误.未找到或无法访问服务器.请验证实例名称是否正确并且 SQL Server 已配置为允许远程连接. (provider ...

  3. Python 读写操作Excel —— 安装第三方库(xlrd、xlwt、xlutils、openpyxl)

    数据处理是 Python 的一大应用场景,而 Excel 则是最流行的数据处理软件.因此用 Python 进行数据相关的工作时,难免要和 Excel 打交道. 如果仅仅是要以表单形式保存数据,可以借助 ...

  4. 虚拟机vmnet0、vmnet1和vmnet8的区别

    vmnet0,实际上就是一个虚拟的网桥 vmnet0,实际上就是一个虚拟的网桥,这个网桥有很若干个端口,一个端口用于连接你的Host,一个端口用于连接你的虚拟机,他们的位置是对等的,谁也不是谁的网关. ...

  5. thinkphp5的Auth权限认证实战

    thinkphp5的Auth权限认证实战 一.总结 一句话总结:基于角色的权限管理(真正做一遍,就会发现很简单,不然一直都是半懂不懂的) 角色 权限 真正做一遍,就会发现很简单,不然一直都是半懂不懂的 ...

  6. (转)C#连接OleDBConnection数据库的操作

    对于不同的.net数据提供者,ADO.NET采用不同的Connection对象连接数据库.这些Connection对我们屏蔽了具体的实现细节,并提供了一种统一的实现方法. Connection类有四种 ...

  7. Bash Shell 注释多行的几种方法(转)

    很实用的小技巧. 我们shell脚本写好了,但是想一行一行测试,怎么办. 笨方法:每行前面加一个 #,有时候我们原脚本里面本来就有注释,所以想再恢复的时候就麻烦了. Bash Shell 注释多行的几 ...

  8. TF-IDF的解释

    转自:http://www.cnblogs.com/gongxijun/p/8673241.html TF(词频):  假定存在一份有N个词的文件A,其中‘明星‘这个词出现的次数为T.那么 TF = ...

  9. 11月28日 记录一个错误❌,看ruby on rails --active support core extensions--present? && presence && duplicable?

    ❌错误 1. @job.resume.count: 提示❌   undefined method `resume' ✅: @job.resumes.count  //解释:调出某一个job的所有简历, ...

  10. a gcc 4.2.4 bug(被stos指令累加后%edi作为参数的)

    a gcc 4.2.4 bug(被stos指令累加后%edi作为参数的) * * Ok, now we can initialize the rest of the tty devices and c ...