Problem

Description

小 \(Q\) 有 \(n\) 本书,每本书有一个独一无二的编号,现在它们正零乱地在地上排成了一排。

小 \(Q\) 希望把这一排书分成恰好 \(k\) 段,使得每段至少有一本书,然后把每段按照现在的顺序依次放到 \(k\) 层书架的每一层上去。

将所有书都放到书架上后,小 \(Q\) 这才突然意识到它们是乱序的,他只好把每一层的书分别按照编号从小到大排序。排序每次可以在 \(1\) 单位时间内交换同一层上两本相邻的书。

请写一个程序,帮助小 \(Q\) 计算如何划分这 \(k\) 段,且如何交换这些书,使得总交换次数最少。

Input Format

第一行包含两个正整数 \(n,k\)。

第二行包含 \(n\) 个互不相同的正整数 \(a_1, a_2, ..., a_n\),分别表示地面上每本书的编号。

Output Format

输出一行一个整数,即最少的总交换次数。

Sample

Input

6 3
4 3 6 2 5 1

Output

1

Explanation

Explanation for Input

按 \([4, 3, 6][2, 5][1]\) 划分,需要排序 \(1 + 0 + 0 = 1\) 次。

Range

\(1 \le n \le 40000, 1 \le k \le min(10, n), \forall 1 \le a_i \le n\)

Algorithm

\(DP\) ,决策单调性

Mentality

其实决策单调性也没啥可怕的地方,主要重点在于你的思考!

我们先列出最朴素的 \(dp\) 方程:\(dp[i][j]\) 表示将前 \(i\) 本书划分到 \(j\) 层书架的最小代价,那么我们设 \(w(i,j)\) 代表区间 \([i,j]\) 内的逆序对数目,我们就有如下方程:

\[dp[i][j]=Min_{p<i}(dp[p][j-1]+w(p+1,i))
\]

答案即为 \(dp[n][k]\) 。

这样 \(dp\) 的复杂度为 \(n^2k\) , 时间显然过不去。

那么由于式子非常决策单调性,那么我们考虑打表证明,果然有 \(w\) 函数满足四边形不等式。

随后当我们枚举一个 \(j\) 时,我们设 \(g[i]\) 为 \(dp[i][j]\) 的最优决策点,即 \(dp[i][j]=dp[g[i]][j-1]+w(g[i]+1,i)\),则有 \(g[i-1]\le g[i]\) 。

这个证明很简单,对于两个决策点 \(p<q\) ,如果 \(dp[q]+w\le dp[p]+w\) ,由于 \(w\) 函数越来越大,所以如果 \(q\) 比 \(p\) 更优,那么 \(q\) 永远比 \(p\) 更优。所以我们的最优决策点必定单调右移,即 \(g[i-1]\le g[i]\) 。

那么根据这个单调性搞事情,我们考虑分治 \(dp\) ,对于区间 \([l,r]\) 的 \(dp\) ,我们考虑确定它的最优决策点所在的区间 \([L,R]\) 。那么我们找出 \(mid\) 处的最优决策点 \(p\),根据决策单调性,则区间 \([mid+1,r]\) 的最优决策区间必定为 \([p,R]\) ,而区间 \([l,mid-1]\) 的最优决策区间则必定为 \([L,p]\) 。

根据这样递归分治,每次枚举最优决策区间更新 \(mid\) ,并递归处理,枚举决策区间便构成了一颗类似线段树的情况,那么对于同一递归层数,决策区间的和正好就是 \(O(n)\) ,那么决策区间枚举的总复杂度就是 \(nlog\) ,均摊下来,则我们枚举决策点的复杂度变为 \(log\) ,枚举状态复杂度为 \(O(nk)\) 。

样例的递归分治,当 \(k=2\) 时如下图:

由此可见,每层的决策点枚举只会是 \(O(n)\) ,那么总复杂度为 层数× \(n\) ,即 \(O(nlog)\) 。

接下来还剩一个状态转移,那么我们只需要管 \(w\) 函数如何快速地求出来就好了。这里我们先看我们的处理顺序为先递归左区间再递归右区间,那么大多数时候 \(w\) 的右端点只是根据 \(dp\) 需求不断增加 \(1\) ,递归下去的时候也只是减少一些。

则我们可以考虑维护一个类似莫队的东西,维护一个全局的 \(L\) 与 \(R\) ,每次需要获取答案的时候,我们就将 \(L\) 和 \(R\) 一步一步移动到指定位置,用树状数组动态维护逆序对即可。这样做的话大概总复杂度是 \(nlog\) 带个玄学常数?那么均摊下来就是 \(log\) 的复杂度。

则最后的时间复杂度=枚举状态×枚举决策点×状态转移=\(O(nk)×O(log)×O(log)\)=\(O(nklog^2)\) 。能够通过题目。

Code

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int n, K, sum, L, R, now, a[40001], c[40001], f[40001][11];
void add(int k, int x) {
for (int i = k; i <= n; i += i & -i) c[i] += x;
}
int query(int x) {
int ans = 0;
for (int i = x; i > 0; i -= i & -i) ans += c[i];
return ans;
}
void Move(int l, int r) //莫队式移动
{
while (L < l) sum -= query(a[L] - 1), add(a[L++], -1);
while (L > l) sum += query(a[L - 1] - 1), add(a[--L], 1);
while (R < r) sum += R - L + 1 - query(a[R + 1]), add(a[++R], 1);
while (R > r) sum -= R - L + 1 - query(a[R]), add(a[R--], -1);
}
void solve(int l, int r, int L, int R) {
if (l > r) return;
int mid = (l + r) >> 1, p = L;
for (int i = L; i <= min(mid - 1, R); i++) {
Move(i + 1, mid);
int Sum = f[i][now - 1] + sum;
if (Sum < f[mid][now]) f[mid][now] = Sum, p = i; //确定最优决策点
}
solve(l, mid - 1, L, p);
solve(mid + 1, r, p, R); //递归
}
int main() {
cin >> n >> K;
L = 1; //初始化莫队指针
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
memset(f, 10, sizeof(f));
for (int i = 1; i <= n; i++) Move(1, i), f[i][1] = sum; //先计算 k=1
for (now = 2; now <= K; now++) solve(1, n, 1, n); //开始递归
cout << f[n][K];
}

【BZOJ 5125】小Q的书架的更多相关文章

  1. BZOJ5125: [Lydsy1712月赛]小Q的书架【决策单调性优化DP】【BIT】【莫队】【分治】

    小Q有n本书,每本书有一个独一无二的编号,现在它们正零乱地在地上排成了一排. 小Q希望把这一排书分成恰好k段,使得每段至少有一本书,然后把每段按照现在的顺序依次放到k层书架的每一层上去.将所有书都放到 ...

  2. bzoj 4017: 小Q的无敌异或

    4017: 小Q的无敌异或 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 593  Solved: 197[Submit][Status][Discu ...

  3. bzoj 5125: [Lydsy1712月赛]小Q的书架

    新学了一波 决策单调性 dp 套路.... 这种dp一般是长这样的 => f[i][j] = max/min  { f[i-1][k] + cost(k+1,j)} ,其中cost函数满足四边形 ...

  4. BZOJ5125 小Q的书架(决策单调性+动态规划+分治+树状数组)

    设f[i][j]为前i个划成j段的最小代价,枚举上个划分点转移.容易想到这个dp有决策单调性,感性证明一下比较显然.如果用单调栈维护决策就不太能快速的求出逆序对个数了,改为使用分治,移动端点时树状数组 ...

  5. [BZOJ5125]小Q的书架(决策单调性+分治DP+树状数组)

    显然有决策单调性,但由于逆序对不容易计算,考虑分治DP. solve(k,x,y,l,r)表示当前需要选k段,待更新的位置为[l,r],这些位置的可能决策点区间为[x,y].暴力计算出(l+r)/2的 ...

  6. BZOJ5125: [Lydsy1712月赛]小Q的书架(DP决策单调性)

    题意:N个数,按顺序划分为K组,使得逆序对之和最小. 思路:之前能用四边形不等式写的,一般网上都还有DP单调性分治的做法,今天也尝试用后者写(抄)了一遍.即: 分成K组,我们进行K-1次分治,get( ...

  7. bzoj 4815 小Q的表格 —— 反演+分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 思路就和这里一样:https://blog.csdn.net/leolyun/arti ...

  8. BZOJ 4017 小 Q 的无敌异或 ( 树状数组、区间异或和、区间异或和之和、按位计贡献思想 )

    题目链接 题意 : 中文题 分析 : 首先引入两篇写的很好的题解 题解一.题解二 听说这种和异或相关区间求和的问题都尽量按位考虑 首先第一问.按二进制位计贡献的话.那么对于第 k 位而言 其贡献 = ...

  9. BZOJ [Cqoi2017] 小Q的棋盘

    题解:枚举最后在哪里停止,然后剩下的步数/2 也就是找最大深度 枚举终止位置算是一种思路吧 #include<iostream> #include<cstdio> #inclu ...

随机推荐

  1. Spring源码阅读(六)

    这一讲分析spring bean属性注入代码populateBean,源码分析如下 /** * Populate the bean instance in the given BeanWrapper ...

  2. bzoj4445 小凸想跑步

    题目链接 半平面交,注意直线方向!!! 对于凸包上任意一条边$LINE(p_i,p_{i+1})$都有$S_{\Delta{p_i} {p_{i + 1}}p} < S_{\Delta{p_0} ...

  3. [转载]oracle的加密和解密

    加密函数 create or replace function encrypt_des(p_text varchar2, p_key varchar2) return varchar2 isv_tex ...

  4. python里面的xlrd模块

    ♦python操作excel主要用到xlrd和xlwt这两个库,即xlrd是读excel,xlwt是写excel的库. 今天就先来说一下xlrd模块: 一.安装xlrd模块 ♦ 到python官网下载 ...

  5. Spring Boot中注入配置文件application.properties中的list 对象参数

    例如要注入下列参数: dyn.spring.datasources[0].name=branchtadyn.spring.datasources[0].driverClassName=oracle.j ...

  6. eclipse maven Errors while generating javadoc on java8

    With JDK 8, we are unable to get Javadoc unless your tool meets the standards of doclint. Some of it ...

  7. 02: pycharm远程linux开发和调试代码

    1.1 配置远程linux主机信息 参考博客:https://www.cnblogs.com/lei0213/p/7898301.html 1) 选择Tools--Deployment--Config ...

  8. promql查询表达式

    Basics 即时矢量选择器 =:匹配与标签相等的内容!=:不匹配与标签相等的内容=~: 根据正则表达式匹配与标签符合的内容!~:根据正则表达式不匹配与标签符合的内容 示例: http_request ...

  9. MS08_067漏洞渗透攻击实践

    MS08_067漏洞渗透攻击实践 实验前准备 1.两台虚拟机,其中一台为kali,一台为windows xp sp3(英文版). 2.在VMware中设置两台虚拟机网络为NAT模式,自动分配IP地址, ...

  10. 基于快速排序思想partition查找第K大的数或者第K小的数。

    快速排序 下面是之前实现过的快速排序的代码. function quickSort(a,left,right){ if(left==right)return; let key=partition(a, ...