tf.nn.relu
tf.nn.relu(features, name = None)
这个函数的作用是计算激活函数 relu,即 max(features, 0)。即将矩阵中每行的非最大值置0。
import tensorflow as tf a = tf.constant([-1.0, 2.0])
with tf.Session() as sess:
b = tf.nn.relu(a)
print sess.run(b)
以上程序输出的结果是:[0. 2.]
tf.nn.relu的更多相关文章
- [Tensorflow]激励函数tf.nn.relu样例
代码: import tensorflow as tf import numpy as np ### 定义添加神经网络层函数 START ### def add_layer(inputs,in_siz ...
- tf.nn.relu 激活函数
tf.nn.relu(features, name = None) 计算校正线性:max(features, 0) 参数: features:一个Tensor.必须是下列类型之一:float32,fl ...
- 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在
1. tf.nn.moments(x, axes=[0, 1, 2]) # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...
- 深度学习原理与框架- tf.nn.atrous_conv2d(空洞卷积) 问题:空洞卷积增加了卷积核的维度,为什么不直接使用7*7呢
空洞卷积, 从图中可以看出,对于一个3*3的卷积,可以通过使用增加卷积的空洞的个数,来获得较大的感受眼, 从第一幅图中可以看出3*3的卷积,可以通过补零的方式,变成7*7的感受眼,这里补零的个数为1, ...
- 深度学习原理与框架- tf.nn.conv2d_transpose(反卷积操作) tf.nn.conv2d_transpose(进行反卷积操作) 对于stride的理解存在问题?
反卷积操作: 首先对需要进行维度扩张的feature_map 进行补零操作,然后使用3*3的卷积核,进行卷积操作,使得其维度进行扩张,图中可以看出,2*2的feature经过卷积变成了4*4. ...
- 深度学习原理与框架-CNN在文本分类的应用 1.tf.nn.embedding_lookup(根据索引数据从数据中取出数据) 2.saver.restore(加载sess参数)
1. tf.nn.embedding_lookup(W, X) W的维度为[len(vocabulary_list), 128], X的维度为[?, 8],组合后的维度为[?, 8, 128] 代码说 ...
- 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...
- 第三节,TensorFlow 使用CNN实现手写数字识别(卷积函数tf.nn.convd介绍)
上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即 ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
随机推荐
- iOS UI调试神器,插件injection for Xcode使用方法
项目越来越大,代码编译时间越来越长,你是不是早已经厌倦了改一点点UI布局就要重新编译一次项目的过程,我们一分钟几百万上下的,怎能被编译浪费掉珍贵的时间.使用injectionforxcode这款插件, ...
- cocos2d JS-(JavaScript) cc.each循环遍历对象
有了它,妈妈再也不用担心我的数组会越界啦!! each()方法能使DOM循环结构简洁,不容易出错.each()函数封装了十分强大的遍历功能,使用也很方便,它可以遍历一维数组.多维数组.DOM, JSO ...
- filename
package com.enjoyor.soa.traffic.server.tms.controller; import java.io.BufferedReader;import java.io. ...
- mongodb对数组元素及内嵌文档进行增删改查操作(转)
from:https://my.oschina.net/132722/blog/168274 比如我有一个user类,他包含一个标签属性,这个标签是一个数组,数组里面的元素是内嵌文档,格式如下: &l ...
- java详解内部类
可以将一个类的定义放在另一个类的定义内部,这就是内部类. 内部类是一个非常有用的特性但又比较难理解使用的特性(鄙人到现在都没有怎么使用过内部类,对内部类也只是略知一二). 第一次见面 内部类我们从外面 ...
- 5.JVM的内存区域划分
一.JVM介绍 1. 什么是JVM? JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟 ...
- 【转】win中IDLE选择virtualenv的启动方法
从dos命令行运行.(virtualenv dir)\Scripts\activate.bat脚本激活环境,然后执行: python -m idlelib.idle 摘录:https://blog.c ...
- Sql 嵌套循环
DECLARE @i INT ,@j INT BEGIN PRINT 'satrt i:'+CAST(@i AS varchar) BEGIN PRINT 'j:'+CAST(@j AS varcha ...
- 微信小程序制作家庭记账本之四
第四天,仍然对记账本代码进行研究,对按钮的大小设置,颜色,具体位置进行分析,但其中很多代码都不明白.
- 转:【专题七】UDP编程补充——UDP广播程序的实现
上次因为时间的关系,所以把上一个专题遗留下的一个问题在本专题中和大家分享下,本专题主要介绍下如何实现UDP广播的程序,下面就直接介绍实现过程和代码以及运行的结果. 一.程序实现 UDP广播程序的实现代 ...