一、How to make auto-adjustments(brightness and contrast) for image Android Opencv Image Correction

i'm using OpenCV for Android.
I would like to know,how to make image correction(auto adjustments of brightness/contrast) for image(bitmap) in android via OpenCV or that can be done by native ColorMatrixFilter from Android!??

I tried to google,but didn't found good tutorials/examples.
So how can i achieve my goal? Any ideas?
Thanks!

算法问题,需要寻找到自动调整亮度和对比度的算法。

回答:

Brightness and contrast is linear operator with parameter alpha and beta

O(x,y) = alpha * I(x,y) + beta

In OpenCV you can do this with convertTo.

The question here is how to calculate alpha and beta automatically ?

Looking at histogram, alpha operates as color range amplifier, beta operates as range shift.

Automatic brightness and contrast optimization calculates alpha and beta so that the output range is 0..255.

input range = max(I) - min(I)
 
wanted output range = 255;
 
alpha = output range / input range = 255 / ( max(I) - min(I) )

min(O) = alpha * min(I) + beta
beta = -min(I) * alpha

Histogram Wings Cut (clipping)

To maximize the result of it's useful to cut out some color with few pixels.

This is done cutting left right and wings of histogram where color frequency is less than a value (typically 1%). Calculating cumulative distribution from the histogram you can easly find where to cut.

may be sample chart helps to understand:

By the way BrightnessAndContrastAuto could be named normalizeHist because it works on BGR and gray images stretching the histogram to the full range without touching bins balance. If input image has range 0..255 BrightnessAndContrastAuto will do nothing.

Histogram equalization and CLAE works only on gray images and they change grays level balancing. look at the images below:


也就是实现了彩色的颜色增强算法

  void BrightnessAndContrastAuto(const cv::Mat &src, cv::Mat &dst, float clipHistPercent)
  {
    CV_Assert(clipHistPercent >= 0);
    CV_Assert((src.type() == CV_8UC1) || (src.type() == CV_8UC3) || (src.type() == CV_8UC4));
    int histSize = 256;
    float alpha, beta;
    double minGray = 0, maxGray = 0;
    //to calculate grayscale histogram
    cv::Mat gray;
    if (src.type() == CV_8UC1) gray = src;
    else if (src.type() == CV_8UC3) cvtColor(src, gray, CV_BGR2GRAY);
    else if (src.type() == CV_8UC4) cvtColor(src, gray, CV_BGRA2GRAY);
    if (clipHistPercent == 0)
    {
        // keep full available range
        cv::minMaxLoc(gray, &minGray, &maxGray);
    }
    else
    {
        cv::Mat hist; //the grayscale histogram
        float range[] = { 0, 256 };
        const float* histRange = { range };
        bool uniform = true;
        bool accumulate = false;
        calcHist(&gray, 1, 0, cv::Mat (), hist, 1, &histSize, &histRange, uniform, accumulate);
        // calculate cumulative distribution from the histogram
        std::vector<float> accumulator(histSize);
        accumulator[0] = hist.at<float>(0);
        for (int i = 1; i < histSize; i++)
        {
            accumulator[i] = accumulator[i - 1] + hist.at<float>(i);
        }
        // locate points that cuts at required value
        float max = accumulator.back();
        clipHistPercent *= (max / 100.0); //make percent as absolute
        clipHistPercent /= 2.0; // left and right wings
        // locate left cut
        minGray = 0;
        while (accumulator[minGray] < clipHistPercent)
            minGray++;
        // locate right cut
        maxGray = histSize - 1;
        while (accumulator[maxGray] >= (max - clipHistPercent))
            maxGray--;
    }
    // current range
    float inputRange = maxGray - minGray;
    alpha = (histSize - 1) / inputRange;   // alpha expands current range to histsize range
    beta = -minGray * alpha;             // beta shifts current range so that minGray will go to 0
    // Apply brightness and contrast normalization
    // convertTo operates with saurate_cast
    src.convertTo(dst, -1, alpha, beta);
    // restore alpha channel from source 
    if (dst.type() == CV_8UC4)
    {
        int from_to[] = { 3, 3};
        cv::mixChannels(&src, 4, &dst,1, from_to, 1);
    }
    return;
}


效果比较不错。


二、Template matching behavior - Color

I am evaluating template matching algorithm to differentiate similar and dissimilar objects. What I found is confusing, I had an impression of template matching is a method which compares raw pixel intensity values. Hence when the pixel value varies I expected Template Matching to give a less match percentage.

I have a template and search image having same shape and size differing only in color(Images attached). When I did template matching surprisingly I am getting match percentage greater than 90%.

img = cv2.imread('./images/searchtest.png', cv2.IMREAD_COLOR)template = cv2.imread('./images/template.png', cv2.IMREAD_COLOR)
 
res = cv2.matchTemplate(img, template, cv2.TM_CCORR_NORMED)
 
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)print(max_val)


Template Image :

Search Image :

Can someone give me an insight why it is happening so? I have even tried this in HSV color space, Full BGR image, Full HSV image, Individual channels of B,G,R and Individual channels of H,S,V. In all the cases I am getting a good percentage.

Any help could be really appreciated.



 
这个问题的核心就是彩色模板匹配。很有趣的问题。回答直接给出了source code,
关于这个问题,我认为,彩色模板匹配的意义不是很大,毕竟用于定位的时候,黑白效果更好。
三、likely position of Feature Matching.

I am using Brute Force Matcher with L2 norm. Referring this link https://docs.opencv.org/2.4/doc/tutor...

After the process, I get below image as output

What is the likely position of the object suggested by the feature matching?

I don't understand how to choose the likely position using this image :(

这是一个只知其一不知其二的问题,他能够找到旋转的地方,但是对于下一步如何做没有思路。其实,解决此类问题,最好的方法就是参考教程做一遍。

当然,管理员的回答非常明确:

to retrieve the position of your matched object, you need some further steps :

  • filter the matches for outliers
  • extract the 2d point locations from the keypoints
  • apply findHomography() on the matched 2d points to get a transformation matrix between your query and the scene image
  • apply perspectiveTransform on the boundingbox of the query object, to see, where it is located in the scene image.

我也给出具体回答:

 //used surf
    //
    #include "stdafx.h"
    #include <iostream>
    #include "opencv2/core/core.hpp"
    #include "opencv2/imgproc/imgproc.hpp"
    #include "opencv2/features2d/features2d.hpp"
    #include "opencv2/highgui/highgui.hpp"
    #include "opencv2/nonfree/features2d.hpp"
    #include "opencv2/calib3d/calib3d.hpp"
    using namespace std;
    using namespace cv;
    int main( int argc, char** argv )
    {
        
        Mat img_1 ;
        Mat img_2 ;
        Mat img_raw_1 = imread("c1.bmp");
        Mat img_raw_2 = imread("c3.bmp");
        cvtColor(img_raw_1,img_1,CV_BGR2GRAY);
        cvtColor(img_raw_2,img_2,CV_BGR2GRAY);
        //-- Step 1: 使用SURF识别出特征点
        int minHessian = 400;
        SurfFeatureDetector detector( minHessian );
        std::vector<KeyPoint> keypoints_1, keypoints_2;
        detector.detect( img_1, keypoints_1 );
        detector.detect( img_2, keypoints_2 );
        //-- Step 2: 描述SURF特征
        SurfDescriptorExtractor extractor;
        Mat descriptors_1, descriptors_2;
        extractor.compute( img_1, keypoints_1, descriptors_1 );
        extractor.compute( img_2, keypoints_2, descriptors_2 );
        //-- Step 3: 匹配
        FlannBasedMatcher matcher;//BFMatcher为强制匹配
        std::vector< DMatch > matches;
        matcher.match( descriptors_1, descriptors_2, matches );
        //取最大最小距离
        double max_dist = 0; double min_dist = 100;
        for( int i = 0; i < descriptors_1.rows; i++ )
        { 
            double dist = matches[i].distance;
            if( dist < min_dist ) min_dist = dist;
            if( dist > max_dist ) max_dist = dist;
        }
        std::vector< DMatch > good_matches;
        for( int i = 0; i < descriptors_1.rows; i++ )
        { 
            if( matches[i].distance <= 3*min_dist )//这里的阈值选择了3倍的min_dist
            { 
                good_matches.push_back( matches[i]); 
            }
        }
        //-- Localize the object from img_1 in img_2
        std::vector<Point2f> obj;
        std::vector<Point2f> scene;
        for( int i = 0; i < (int)good_matches.size(); i++ )
        {    
            //这里采用“帧向拼接图像中添加的方法”,因此左边的是scene,右边的是obj
            scene.push_back( keypoints_1[ good_matches[i].queryIdx ].pt );
            obj.push_back( keypoints_2[ good_matches[i].trainIdx ].pt );
        }
        //直接调用ransac,计算单应矩阵
        Mat H = findHomography( obj, scene, CV_RANSAC );
        //图像对准
        Mat result;
        warpPerspective(img_raw_2,result,H,Size(2*img_2.cols,img_2.rows));
        Mat half(result,cv::Rect(0,0,img_2.cols,img_2.rows));
        img_raw_1.copyTo(half);
        imshow("result",result);
        waitKey(0);
        return 0;
    }

四、Run OpenCV to MFC
 I have reproduced this sample, in a MFC app.

The cv::Mat is a CDOcument variable member:

// Attributes
public:
std::vector<CBlob> m_blobs;
cv::Mat m_Mat;

and I draw rectangles over image, with an method (called at some time intervals, according FPS rate):

DrawBlobInfoOnImage(m_blobs, m_Mat);

Here is the code of this method:

void CMyDoc::DrawBlobInfoOnImage(std::vector<CBlob>& blobs, cv::Mat& Mat)
{
for (unsigned int i = 0;i < blobs.size();++i)
{
    if (blobs[i].m_bStillBeingTracked)
    {
        cv::rectangle(Mat, blobs[i].m_rectCurrentBounding, SCALAR_RED, 2);
        double dFontScale = blobs[i].m_dCurrentDiagonalSize / 60.0;
        int nFontThickness = (int)roundf(dFontScale * 1.0);
        cv::putText(Mat, (LPCTSTR)IntToString(i), blobs[i].m_vecPointCenterPositions.back(), CV_FONT_HERSHEY_SIMPLEX, dFontScale, SCALAR_GREEN, nFontThickness);
    }
}
}

but the result of this method is something like that:

My question is: how can I draw only the last blobs result over my image ?

I have tried to clean up m_Mat, and to enable to draw only blobs.size() - 1 blob over image, none of this worked ...

非常有意思的问题,主要就是说他能够用mfc调用oepncv了,但是不知道如何将视频中的框子正确显示(也就是不要有拖尾)

这个也是对问题思考不是很深造成的问题。其实,解决的方法无外乎两个

一是直接修改视频流,也就是在原来的“读取-显示”循环里面添加一些东西(也就是框子),如果是这种方法,你使用或者不使用mfc基本没有什么影响;

比如<PariticalFilter在MFC上的运行,源代码公开>

https://www.cnblogs.com/jsxyhelu/p/6336429.html

二是采用mfc的机制。mfc不是都是对话框吗?那就创建一个窗体,专门用来显示这个矩形就好啦。

比如<GreenOpenPaint的实现(五)矩形框>https://www.cnblogs.com/jsxyhelu/p/6354341.html

五、How to find the thickness of the red color sealent in the image ????

Hi,

I want to find the thickness of the red colored sealent in the image.

First I'm extracting the sealent portion by using findcontours by having minimum and maximum conotur area.And then check the Area,length and thickness of the sealent,i can find the area as well as length but i m not able to find the thickness of the sealent portion.

Please help me guys........below is the example image.

提示一下:

do a distance transform and a skeleton on the binary image.

这是一个算法问题,具体解决,下周给出实现。大家可以先研究一下。

AnswerOpenCV一周佳作欣赏(0615-0622)的更多相关文章

  1. AnswerOpenCV(1001-1007)一周佳作欣赏

    外国不过十一,所以利用十一假期,看看他们都在干什么. 一.小白问题 http://answers.opencv.org/question/199987/contour-single-blob-with ...

  2. AnswerOpenCV(0826-0901)一周佳作欣赏

    1.OpenCV to detect how missing tooth in equipment Hello everyone. I am just starting with OpenCV and ...

  3. (原创)古典主义——平凡之美 佳作欣赏(摄影,欣赏)

    文中图片摘自腾讯文化网:www.cal.qq.com 1.Abstract     生活本就是平淡的,如同真理一般寂静.平时生活中不经意的瞬间,也有它本来的美丽.下面一组图是上上个世纪到上个世纪末一个 ...

  4. Python爬虫之抓取豆瓣影评数据

    脚本功能: 1.访问豆瓣最受欢迎影评页面(http://movie.douban.com/review/best/?start=0),抓取所有影评数据中的标题.作者.影片以及影评信息 2.将抓取的信息 ...

  5. 2017年4月16日 一周AnswerOpenCV佳作赏析

    2017年4月16日 一周AnswerOpenCV佳作赏析 1.HelloHow to smooth edge of text in binary image, based on threshold. ...

  6. 一个java实习生两周八次的面试经历

    以前从来没有因为求职出去面试过,一直觉得面试很可怕,没想到最近两周我也成为了面霸,两周面试八次,我的找工作之路就这样开始了!大概两个星期之前,我看着自己在招聘网站上写好的简历连投出去的勇气都没有,战战 ...

  7. html5开发制作,漂亮html5模板欣赏,H5网站建设

    html5是什么? HTML5 是下一代的 HTML(超文本标记语言,网页的组成部分),HTML5是web开发世界的一次重大的改变,能适配pc.手机等各终端,跨平台性能极强,移动互联网是未来的趋势,h ...

  8. 『创意欣赏』30幅逼真的 3D 虚拟现实环境呈现

    又到周末了,给大家分享30幅漂亮的 3D 虚拟现实环境呈现,放松一下.这些创造性的场景都是通过 3D 图形设计软件,结合三维现实环境渲染制作出来的.一起欣赏:) 您可能感兴趣的相关文章 20幅温馨浪漫 ...

  9. C语言--第0周作业

    1.翻阅邹欣老师博客关于师生关系博客,并回答下列问题: 1)最理想的师生关系是健身教练和学员的关系,在这种师生关系中你期望获得来自老师的哪些帮助? 答: 若教练和学员的关系是最理想的师生关系,那就意味 ...

随机推荐

  1. Serveral effective linux commands

    1. 统计当前文件夹下文件个数(不包括子目录下文件): $ ls -l | grep "^-" | wc -l 2. 统计当前文件夹下文件个数(包括子目录下文件): $ ls -l ...

  2. React对比Vue(06 路由的对比)

    其实差不多, 都需要先安装路由 React  先安装 cnpm install react-router-dom --save 在再根组件引入 import { BrowserRouter as Ro ...

  3. vue中使用ckeditor

    1.第一步首先去ckeditor官网去下载editor文件,这里以ckeditor4为例 首先在index.html里引入js代码 <script type="text/javascr ...

  4. hiho #1014 : Trie树(模板)

    Trie树 [题目链接]Trie树 &题意: 输入 输入的第一行为一个正整数n,表示词典的大小,其后n行,每一行一个单词(不保证是英文单词,也有可能是火星文单词哦),单词由不超过10个的小写英 ...

  5. Python之words count

    要求: 对文件单词进行统计,不区分大小写,并显示单词重复最多的十个单词 思路: 利用字典key,value的特性存单词及其重复的次数 每行进行特殊字符的处理,分离出被特殊字符包含的单词 def mak ...

  6. Block 循环引用(上)

    iOS的内存管理机制 Objective-C在iOS中不支持GC(垃圾回收)机制,而是采用的引用计数的方式管理内存. 引用计数:在引用计数中,每一个对象负责维护对象所有引用的计数值.当一个新的引用指向 ...

  7. Vim for Windows --ctags

    What is ctags? ctags -- Generate tag files for source code,which is a tool used for facilitating rea ...

  8. python复习冒泡排序

    冒泡排序: 思路: 先找到最大值放到最右边: #encoding=utf-8 a=[1,9,2,8,3,6,4] print "a before change:",a for i ...

  9. python迭代器以及生成器

    迭代器iter():节省内存 Iter()迭代器 每一次输出下一个值 >>> a=iter(range(10)) >>> a.next() 0 >>&g ...

  10. 转:wcf大文件传输解决之道(2)

    此篇文章主要是基于http协议应用于大文件传输中的应用,现在我们先解析下wcf中编码器的定义,编码器实现了类的编码,并负责将Message内存中消息转变为网络发送的字节流或者字节缓冲区(对于发送方而言 ...